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Abstract 
RASSF3 is a gene that encodes a protein with tumor-suppressive properties, 

primarily by promoting apoptosis and regulating the cell cycle. It plays a 

significant role in inhibiting cancer progression. In this study, the 3D structure 

of RASSF3 was predicted using homology modeling. MODELLER (v10.4) 

and online tools such as I-TASSER, Swiss-Model, and MODWEB were 

employed for model generation. The structural models were evaluated for 

accuracy using tools including ERRAT, PROCHECK, and Rampage. The most 

reliable model, based on validation, was selected for molecular docking 

studies. Binding pockets of RASSF3 were identified using the CASTp server. 

Molecular docking was carried out using AutoDock Vina and AutoDock4 to 

investigate the interaction between RASSF3 and two selected ligands: ANP 

and GNP. These compounds demonstrated the lowest binding energies of -5.7 

and -5.3 Kcal/mol respectively and the highest binding affinities within the top-

ranked binding site. Identification of these binding domains and ligand 

interactions is critical for understanding the functional behavior of RASSF3 

and its role in cancer inhibition. The predicted binding pockets and docking 

results suggest that RASSF3 could serve as a promising target in anticancer 

drug discovery. 

 

 

 

 

 

 

 

 

 

This work is licensed under the Creative Commons Attribution Non-

Commercial 4.0 International License.  

 

 

Open Access A R T I C L E I N F O  
 

 

Received  

May 03, 2025 

Revised 

July 31, 2025 

Accepted 

August 05, 2025 

 

 

 

*Corresponding Author  

Huma Nawaz 

 

E-mail   

humanawaz00@gmail.com   
 

 

 

Keywords 

RASSF3 

Homology modeling 

Cancer 

Apoptosis 

Drug discovery 

Bioinformatics 

 

 

 

How to Cite 

Masood Q, Bibi H, Nawaz H. 

Comparative modeling and in 

silico identification of drug target 

sites in RASSF3. Biomedical 

Letters 2025; 11(2):69-79. 

 

 

 

 
Research article 
2025 | Volume 11 | Issue 2 | Pages 69-79       

Biomedical Letters ISSN 2410-955X               DOI: https://doi.org/10.47262/BL/9.1.20230503 

SCAN ME 

mailto:humanawaz00@gmail.com
https://doi.org/10.47262/BL/9.1.20230503


 
Biomedical Letters 2025; 11(2):69-79 

 
70 

 

Introduction 

Cancer is a malignant tumor and neoplasm that 

involves irregular cell growth and spreading to other 

parts of the body [1]. It forms a subset of neoplasms, 

which are involved in unregulated cell growth and 

diffuse spreading throughout the body [2]. Cancer 

development depends on the heterotypic interaction 

between incipient tumor cells and the normal cells 

around them. Abnormal cell growth (neoplasia) is the 

endpoint of the cancer disease [3]. According to 

Hanahan and Weinberg, six essential alterations can 

cause malignant tumors: 1) self-sufficiency in growth 

signals, 2) insensitivity to growth inhibitors, 3) 

evasion of programmed cell death, 4) limitless 

replicative potential, 5) sustained angiogenesis, 6) 

tissue invasion and metastasis [4].  

Cancer is a disease of tissue growth regulation. In 

cancer, the genes involved in regulating tissue growth 

must be mutated. Mutation refers to changes in the 

nucleotide sequence of genomic DNA. Mutations 

inactivate tumor suppressor genes (enhancing cell 

division and reducing apoptosis), which leads to 

cancer [5]. There are almost 100 different types of 

cancer that severely affect humans. Like demographic 

and lifestyle factors, breast and ovarian cancers are 

caused by mutations in the BRCA1 and BRCA2 genes 

[2].  

Head and neck cell carcinoma is one of the most 

common types of human cancer, affecting about 

500,000 cases worldwide [6]. Head and neck cancer is 

caused by limitless replicative potential via the p53 

and retinoblastoma pathways [7]. Normal cells arrest 

glycolysis in the presence of oxygen and favor ATP 

production, but cancer cells lose this regulation and 

perform glycolysis in the absence of O2, producing 

lactate [8].  

Abnormal splicing of mRNA precursors is a nearly 

ubiquitous and highly flexible gene checkpoint in 

humans. This enables cells to create protein isoforms 

from a single gene, which may have different or even 

opposing functions. Cancer cells damage this 

flexibility to produce proteins that promote growth 

and survival. These isoforms are developmentally 

regulated and re-expressed in tumors [3].  

Chemoprevention is the use of pharmacological or 

natural agents to inhibit the spread of cancer by 

blocking DNA damage that leads to carcinogenesis in 

already-damaged cells [9].  

The RASSF family of tumor suppressor genes 

encodes Ras effector proteins, which mediate the 
growth-inhibitory function of Ras proteins [10]. The 

Ras association domain family consists of ten 

mammalian proteins, RASSF1 to RASSF10.  

RASSF1 to RASSF6 are called the classical family 

because they have the SARAH domain at the C-

terminal, while RASSF7-10 are called the N-terminal 

family because they have the RA domain at the N-

terminal and lack of SARAH domain. Among 

RASSF1 to RASSF6, there is a high similarity in 

RASSF1, RASSF3, and RASSF5, which are believed 

to have come from a common ancestor [11].  

Several members of the RASSF family are inactivated 

by DNA hypermethylation in cancers. RASSF2 

regulates apoptosis through various downstream 

effectors, such as MST1 and MST2, and can mediate 

the growth inhibitory properties of K-Ras [12]. 

RASSF3 (Ras association domain family member 3) 

is a tumor suppressor gene. Human RASSF3 shows 

homology to the genomic sequence of mice. RASSF3 

is located on chromosome 12q14.1, encodes 238 

amino acids, and has a molecular weight of 28.6 kDa. 

RASSF3 follows a signaling pathway involved in 

cancer inhibition [13]. The Ras proteins (GTPases) act 

as molecular switches for signaling pathways. They 

regulate survival, migration, cytoskeletal dynamism, 

cell proliferation, differentiation, and growth. Ras 

proteins cycle between active GTP-bound and 

inactive GDP-bound states. They activate/inactivate 

GTP-bound states via signal transduction from 

extracellular growth factors. Guanine nucleotide 

exchange factors (GEFs) and GTPase-activating 

proteins (GAPs) regulate the exchange of GTP to 

GDP on Ras [14].  

In breast cancer, the expression of RASSF3 inhibits 

cell growth by inducing apoptosis.  In head and neck 

cancer, RASSF3 suppresses tumors through p53-

dependent apoptosis [15]. Bioinformatics is a 

multidisciplinary field that combines computational 

biology, mathematics, molecular biology, and 

genetics to solve biological problems computationally 

[16]. Structure prediction techniques like NMR and 

X-ray crystallography are costly.  

Therefore, we can use bioinformatics tools for 

structure prediction through threading, homology 

modeling, and ab initio approaches. Bioinformatics is 

a multidisciplinary domain utilized to solve various 

biological problems through statistics, mathematics, 

and computational powers [17, 18, 19]. 

Bioinformatics is used for in silico analyses to solve 

biological problems [20, 21]. Various inhibitors, 

vaccines, and drug-like compounds have been 

reported by using computational approaches against 

diabetes, cancers, viral infections [22], parasitic 

infections, and neurological diseases [20]. The 3D 
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structure of RASSF3 has not been reported in the 

Protein Data Bank (PDB). In this paper, we use 

computational approaches to predict the 3D structure 

of RASSF3 and reveal its binding pockets (target 

sites) against cancer. The target sites of RASSF3 were 

used for molecular docking with chemically designed 

ligands. 

Materials and Methods 

Computational analyses were carried out for the 

structure prediction of the target protein RASSF3, 

following approaches reported in previous studies 

[16]. The amino acid sequence of RASSF3 was 

retrieved from UniProt [23] database in FASTA 

format (UniProt ID: Q86WH2). To identify a suitable 

template for structure prediction, the sequence was 

subjected to BLASTp and PSI-BLAST against the 

Protein Data Bank (PDB) [24].  

Four suitable templates for RASSF3 were identified. 

A template with the highest query coverage was 

selected for structure prediction. Template files in 

PDB format were downloaded, and both sequence and 

structural alignments were performed using the UCSF 

Chimera 1.8 [25]. Based on these alignments, 

structure prediction was conducted using various 

servers, including I-TASSER [26], Swiss-Model [27], 

MODWEB [28], and 3D JigSaw [29], as well as 

MODELLER 10.4 [30], which was used for 

comparative modeling with all four templates. 

The accuracy of the predicted models was validated 

using MolProbity [31], ERRAT [32], and 

Ramachandran plots generated by PROCHECK [33]. 

The considerable model was selected based on 

combined evaluation parameters. 

Structural refinement was performed using WinCoot 

[34], where poor rotamers and Ramachandran outliers 

were corrected. The energy of the refined model was 

minimized using UCSF Chimera 1.8. The binding 

pockets (target sites) of RASSF3 were predicted using 

the CASTp server [35]. 

Two chemically designed ligands, ANP 

(Phosphoaminophonic adenylate ester) and GNP 

(Phosphoaminophonic acid guanylate ester), 

previously reported in literature, were selected for 

molecular docking. Ligand structures were optimized 

and energy minimized using ChemDraw [36]. 

Molecular docking was performed using AutoDock 

Vina [37]. The ligands ANP and GNP were docked 

into the predicted active sites of RASSF3, targeting 

residues with the highest predicted interaction 

potential. The docked complexes were visualized and 

analyzed using UCSF Chimera 1.8.The adopted 

methodology has been validated and reported [38]. 

Results and Discussion 

The primary objective of this study was to investigate 

the interaction between RASSF3 and cancer-related 

pathways through computational analysis. A three-

dimensional (3D) structure of RASSF3 was predicted 

using bioinformatics tools. The study involved 

structure prediction, identification of potential binding 

pockets, and molecular docking analysis. The 

predicted 3D model of RASSF3 demonstrated high 

structural accuracy, particularly within the identified 

binding regions, supporting its relevance as a potential 

drug target. 

3D structure of RASSF3 has not yet been reported. 

The amino acid sequence (238 residues) was retrieved 

from the UniProt database (accession number: 

Q86WH2) in FASTA format and subjected to the 

protein BLAST against the Protein Data Bank (PDB) 

to identify suitable templates for homology modeling. 

Four appropriate templates were identified: 3DCC, 

4OH8, 4LGD, and 2YMY, with query coverages of 

56%, 18%, 18%, and 15%, respectively (Table 1). 

 
Table 1: Templates used for RASSF3 homology 

modeling along with their alignment scores, query 

coverage, E-values, and sequence identity percentages. 

 

For structure prediction, the template with the highest 

query coverage (3DCC) was selected; however, all 

four templates were used for comparative modeling. 

The 3D structure of RASSF3 was predicted using 

MODELLER 10.4 and additional online servers, 

including Swiss-Model, I-TASSER, and MODWEB. 

The generated models were evaluated using various 

validation tools such as MolProbity, ERRAT, and 

PROCHECK. 

Comparative analysis of the predicted models from 

MODELLER and the online servers was performed 

and Ramachandran plots and overall quality factor 

values were analyzed. The most reliable model was 

selected based on these validation metrics and further 

visualized. 

The predicted 3D model of RASSF3 was evaluated, 

which analyzes the φ (phi) and ψ (psi) backbone 

Templates Max 

score 

Total 

score 

Query 

coverage 

E-value Identity 

3DDC 121 121 56% 2e-34 44% 
4OH8 66.6 66.6 18% 1e-14 64% 

4LGD 66.2 66.2 18% 1e-14 64% 

2YMY 52.8 52.8 15% 1e-09 63% 
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dihedral angles of protein residues. These angles were 

plotted to distinguish between favorable and 

unfavorable regions. The considerable model of 

RASSF3 was selected based on these graphical 

evaluations (Fig. 1) and 3D structure of RASSF3 was 

then visualized (Fig. 2). 

Further evaluation of the predicted model was also 

performed. These plots display the distributions of φ 

and ψ angles specifically for non-glycine and non-

proline residues (Fig. 3). The Ramachandran analysis 

helped differentiate between the favorable, allowed, 

and disallowed regions, thus aiding in assessing the 

stereochemical quality of the model. 

 

  
 

 

Fig. 1: (a) Favored regions are shown in blue, and favored rotamers are highlighted in brown. (b) Bad bonds are 

indicated in blue, while bad angles are marked in brown. (c) Overall quality factor of the predicted models. 

 
Fig. 2: Pie chart illustrating the contribution of structural validation parameters in the selected RASSF3 model. Overall 

quality factor is represented in green (95.24%), rotamer favored regions in blue (96.76%), and Ramachandran favored 

regions in grey (84.32%). 



 
Biomedical Letters 2025; 11(2):69-79 

 
73 

 

The modeled protein structure was evaluated for 

Ramachandran plot. The structure was evaluated for 

favored, allowed, and disallowed regions based on 

their φ (phi) and ψ (psi) angle distributions. 

Residues located in disallowed regions should be 

remodeled, and the overall energy of the model 

minimized to improve stereochemical quality 

reducing the number of bad bonds and bond angles 

enhances structural reliability. The structural integrity 

of the model based on the density of residues in well-

defined conformational regions were evaluated. The 

PDB-format structure of RASSF3 was submitted to 

PROCHECK, which identified and categorized the 

distribution of residues across favored, allowed, and 

disallowed regions (Fig. 4). 

 
Fig. 3: 3D structure of RASSF3 selected based on structural evaluation metrics. The model shows α-helices formed 

by hydrogen bonding between the carbonyl group of one amino acid and the amide (N-H) group of another. In the β-

pleated sheets, two polypeptide chains are aligned and stabilized by inter-chain hydrogen bonds. 

 

 
Fig. 4: Ramachandran plot showing the distribution of residues in the favored, allowed, and disallowed regions. The 

majority of residues were successfully located in the favored region, and only 3 residues were observed in the 

disallowed region. 
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Two reference lines were drawn on the error axis to 

indicate the confidence threshold for rejecting regions 

that exceed the acceptable error value. Overall quality 

score was expressed as the percentage of the protein 

model for which the calculated error value falls below 

the 95% rejection limit. High-resolution protein 

structures typically yield quality factor values above 

95% (Fig. 5). 

The top ten binding pockets of RASSF3 were 

identified and ranked based on their binding energy 

values (Table 2). Since the binding pockets of 

RASSF3 have not been previously reported, in silico 

approaches were employed to predict the potential 

target sites. The energy range of these predicted 

pockets reflects the strength of residue-residue 

interactions between the ligand and the receptor 

cavity. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Overall quality factor of the selected RASSF3 model, showing a score of 95.238%, indicating a high level of 

structural accuracy. 

Table 2: Top ten predicted binding pockets of RASSF3, ranked by binding energy and cavity volume  

Rank Energy 

(kcal/mol) 

Volume (Å) Residues 

1 -800.12 65.00 Phe-16, Phe-17, Arg-20, Thr-21, Lys-57, Lys-60, Tyr-61, Ala-64, 

Leu-169, Val-170, Ala-171, Gly-172, Pro-173, Arg-174 

2 -588.63 43.00 Phe-24, Gly-30, Lys-31, Arg-33, Lys-41, Glu-42, Lys-145, Cys-

147, Arg-149, Leu-167, Val-170, Ala-171, Leu-178 

3 -559.05 51.00 Glu-88, Leu-89, Cys-90, Ser-106, Tyr-144, Arg-146, Val-181, Arg-

183, Leu-205, Glu-208, Glu-211, Gln-212 

4 -446.40 39.00 His-46, Leu-49, Ser-50, Lys-51, Ile-54, Asn-76, Gly-77, Ile-78, 

Ser-117, Thr-118, Tyr-166 

5 -368.15 32.00 Asp-14, Phe-16, Phe-17, Asn-62, Leu-63, Ala-64, Val-65, Thr-66, 

Asp-67, Lys-70 

6 -328.60 29.00 Arg-33, Ser-34, Asp-38, Val-39, Glu-42, Tyr-154, Cys-156, Leu-

198, Gln-199 

7 -328.25 31.00 Asn-62, Asp-67, Lys-70, Met-71, Thr-72, Thr-80, Gly-81, Phe-82, 

His-114 

8 -315.93 27.00 Leu-129, Lys-130, Leu-133, Val-134, Thr-135, Glu-136, Pro-138 

9 -275.45 25.00 Gly-122, Ile-125, Pro-138, Ala-139, Phe-141, Lys-157, Asp-160, 

Trp-190 

10 -274.84 23.00 Arg-146, Gln-152, Val-153, Tyr-154, Ala-155, Leu-205, Asp-206, 

Glu-209 



 
Biomedical Letters 2025; 11(2):69-79 

 
75 

 

RASSF3 is a novel tumor suppressor gene that plays 

a critical role in inducing apoptosis during the early 

stages of cancer progression[39]. It is involved in the 

Hippo signaling pathway, which regulates cell 

proliferation and apoptosis. Deregulation of the Hippo 

pathway has been strongly associated with tumor 

development. Activation of the core kinases MST1/2 

is essential for the proper functioning of this pathway. 

MST1/2 kinases, along with the SARAH domain, 

undergo both homodimerization and 

heterodimerization, leading to their activation at the 

activation loop[40]. The ligands ANP and GNP (Fig. 

6) may contribute to the regulation or activation of the 

Hippo signaling pathway, potentially resulting in the 

inhibition of cancer. 

Currently, there is no direct evidence of a specific 

regulator of RASSF3 activity within the signaling 

pathway, as observed in the case of RASSF2. 

Therefore, in this study, in silico techniques were 

employed to target RASSF3 in order to validate its 

binding pockets and identify potential regulators, 

similar to those reported for RASSF5 and RASSF2. 

Molecular docking was performed to predict the most 

favorable interactions between the selected ligands 

(ANP and GNP) and the RASSF3 protein. 

The identification of binding pockets plays a crucial 

role in drug discovery, particularly in the development 

of anti-cancer therapeutics. Molecular docking was 

carried out using AutoDock Vina and AutoDock4 

[41], employing the same compounds in both tools for 

comparative analysis. The resulting docked 

complexes were ranked based on their lowest binding 

energy. Prior to docking, energy minimization of the 

ligands ANP and GNP was conducted. 

 
 

Fig. 6: 2D structures of selected ligands: A) Phosphoaminophonic acid acetylate ester (ANP) and B) 

Phosphoaminophonic acid guanylate ester (GNP) 

 

Table 3: RASSF3 residues involved in interactions with ligands ANP and GNP, along with their corresponding 

binding energies  

Ligands Binding Energy 

(kcal/mol) 

Residues 

ANP -5.2 Tyr-61, Ala-64, Pro-173, Phe-17, Lys-60, Leu-169, Gly-172, Lys-57, Thr-

21, Val-170, Arg-20, Glu-44, Ala-19 

GNP -5.7 Tyr-61, Ala-64, Pro-173, Phe-17, Lys-60, Leu-169, Gly-172, Lys-57, Thr-

21, Val-170, Arg-20, Glu-44, Ala-171, Phe-17, Arg-174 

Based on the number of interactions between the 

ligands (ANP and GNP) and the target receptor 

(RASSF3), both AutoDock4 and AutoDock Vina 

predicted binding within a similar binding pocket. The 

interacting residues were analyzed and visualized. 

Notably, both ANP and GNP exhibited the lowest 

binding energies and the highest binding affinities 

within the top-ranked binding pocket of RASSF3 

(Table 3). 

The specific interactions between RASSF3 and the 

ligands were further analyzed and visualized. The 

docking results confirmed that ANP and GNP bind 

within the same predicted binding site, interacting 

with key residues including Tyr-61, Ala-64, Pro-173, 

Phe-17, Lys-60, Leu-169, Gly-172, Lys-57, Thr-21, 

Val-170, Arg-20, and Glu-44 (Figs. 7-10). 
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Fig. 7: Binding interaction between RASSF3 and the ligand ANP. The active binding cavity is highlighted in blue, 

while the docked ligand ANP is shown in green 

 
Fig. 8: Visualization of the interaction between RASSF3 and the ligand ANP. Interacting residues are indicated by 

red dotted lines, while hydrogen bonds are shown as blue dotted lines. 
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Fig. 9: Binding interaction between RASSF3 and the ligand GNP. The active binding cavity where GNP is docked is 

shown in cyan, while the ligand GNP is displayed in red. 

 

 
Fig. 10: Visualization of the interaction between RASSF3 and the ligand GNP. Interacting residues are represented 

by red dotted lines, while hydrogen bonds are shown as blue dotted lines. 
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The field of bioinformatics plays a significant role in 

cancer treatment [42], [43], [44], as traditional drug 

discovery methods are often costly and time-

consuming. As a result, in silico approaches have 

become increasingly valuable for designing potential 

anticancer agents [45, 46]. Protein function is 

inherently dependent on its structure; thus, effective 

drug design requires knowledge of the protein’s 3D 

structure and active binding domains. In this study, in 
silico techniques were employed to predict the 3D 

structure and identify the binding domains of the 

tumor suppressor protein RASSF3. These findings 

may facilitate the development of targeted cancer 

therapies by providing structural insights essential for 

rational drug design. The selected compounds, ANP 

and GNP, demonstrated strong binding affinity to 

RASSF3 during molecular docking analysis, 

potentially enhancing the functional activity of 

RASSF3 in suppressing tumor progression. 

Conclusion 

In this study, 3D model of the RASSF3 protein was 

successfully predicted using multiple modeling 

approaches and validated through structural 

evaluation tools to select the most reliable model. The 

top ten binding pockets of RASSF3 were identified 

and ranked based on their binding energies. These 

findings highlight the potential of RASSF3 as a target 

in cancer research. The predicted protein structure 

may further serve as a framework for exploring 

interactions with other cancer-related proteins. 

Molecular docking analyses revealed that the selected 

compounds, ANP and GNP, exhibit strong binding 

affinity to the predicted active sites of RASSF3, 

suggesting their potential role in regulating its 

activity. These compounds may serve as lead 

candidates for further studies targeting the RASSF 

protein family. Their successful docking into 

RASSF3’s binding sites indicates promising potential 

for drug delivery to specific target sites in cancer 

therapy. 
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