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Abstract 
Immunoediting is by far the most serious challenge in the immunotherapies 

that are on the rise for Glioblastoma Multiforme (GBM). However, it is a 

double-edged sword because this process can be suppressive of the tumor too. 

Personalized medicine will succeed only if there are effective methods in 

place to address this challenge. A thorough understanding of the host immune 

system and the tumor cells heterogeneity and their mutual interactions is 

necessary. There is a lot of research being pursued in this direction. So far, 

the main aspect identified for developing immunotherapy for GBM is finding 

the balance between the immunoediting and the use of neoantigens for 

neoantigen-directed T-cell therapies. 
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Introduction 

Immunosurveillance 

The understanding of the role of immunoediting 

came into full swing after Brunet and Thomas 

defined a novel concept called immunosurveillance 

[1]. They proposed that the host immune cells, 

especially the T-cells, are responsible for hunting 

down the tumor cells and destroying them. An 

overview of this concept is presented in Fig. 1. They 

also conceived the concept of neoantigens produced 

by the tumor cells as the driving force for the T-cells 

for recognition [2]. There are many evidences 

accumulated in literature over the years to show the 

presence of immunosurveillance. Tumor infiltrating 

lymphocytes (TIL) are responsible for the attack and 

elimination of tumors [3]. An abundance of CD8+ T 

cells in tumors is a marker for their prognosis such as 

in colon cancer [4,5], breast cancer [6], carcinomas 

[7], melanomas [8], and so on. Further, natural killer 

(NK) cells inside the tumor cells in high density have 

also shown that presence of immunosurveillance [9–

11]. This can also be proved by the development of 

tumors in patients that have had renal or cardiac 

transplants that immunosuppression can promote 

cancerous cells like the lung cancer, liver cancer, 

breast cancer, skin cancer and so on [12]. This 

especially true if the donors have had a history of 

cancer because their organs might hoard the 

metastatic tumor cells that have survived the immune 

system of the host [13]. 

R.D. Schreiber, et al., have shone light on the theory 

of immunoediting through their research which 

showed that (1) immunosuppressed mice developed 

sarcomas more aggressively than the wild type mice 

because lack of normal immune responses to IFNγ; 

(2) immunosurveillance was part of the entire 

immune response to the tumor antigens - they 

observed that the immunocompetent mice did not 

develop tumors derived from syngeneic mice were 

implanted in them; (3) T-cell mediated immune 

responses, especially CD4 and CD8 T-cells, were in 

place to protect host from tumors followed by 

development of immunological memory of the tumor 

antigens. However, they also found that transfection 

of major histocompatibility complex (MHC) class I 

and transporter associated with antigen processing 1 

(TAP) genes, which are responsible for antigen 

presentation proteins in tumor cells, was seen in the 

tumor helping them escape the immune system of the 

host. They summarized their research by concluding 

that “The immune response thus functions as an 

effective extrinsic tumor-suppressor system. 

However, this process also leads to the 

immunoselection of tumor cells that are more 

capable of surviving in an immunocompetent host, 

which explains the apparent paradox of tumor 

formation in immunologically intact individuals” 

[14].  

Immunoediting 

Over the years of further understanding of this 

concept, it has been found that the 

immunosurveillance is a only a part of a bigger 

umbrella process called immunoediting [15–17]. 

Immunoediting is a concept where the tumor 

undergoes modifications in the characteristic 

immunogenicity in the presence of active immune 

system of the host that may develop immune-

resistant tumor cells. It is dynamic process that has a 

role in aggressive tumor progression. There are three 

phases of immunoediting – Elimination, Equilibrium, 

and Escape. The summary of this concept has been 

given in Fig. 2 [18]. 

Elimination 

This phase is sometimes used synonymously with 

immunosurveillance. Both innate and adaptive 

immune systems have a major role to play in this 

phase. There might be a role of the non-

immunogenic factors too in the triggering of this 

process like the p53 mutations or down-regulation 

that promotes cancer [3]. Inflammatory cytokines 

from the tumor cells, macrophages, dendritic cells or 

the stromal cells activate the effector cells including 

the NK, NKT, γδ T cells and the IL-12 and IFN-γ. 

The tumor cell death induced by the innate immune 

cells release the tumor antigens (TA) that activate the 

adaptive immune system [19–21]. Further, 

maturation of dendritic cells occurs, and they arrive 

at the tumor draining lymph nodes (TDLNs) 

presenting the TA to the immune system more that 

repeats the process described to eliminate the tumor 

cells in all [22]. There are many immune cells other 

than these primary cells like the TH17 activated by 

IL-17, IL-17F, IL-21, IL-22 and IL-23 receptor (IL-

23R), Regulatory T cells (Treg), CD25+ (IL-2 receptor 

alpha chain), T-cell-attracting chemokine CCL5 (also 

called RANTES), monocyte chemotactic protein 1 

(MCP-1), nuclear factor-κB ligand (RANKL), etc. 
that have a role in the process of elimination [23]. 
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Fig. 1: The overall activity of the immune system in shaping the tumorigenicity 

 

 

 

Fig. 2: The three phases of Immunoediting and the key players of the immune system involved 
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There are four phases to this process: 

• Phase I: Tumor recognition and cell killing 

to a small extent occurs when the tumor 

grows to a discernible size of 2-3 mm that 

initiates pro-inflammatory responses from 

the innate immune system [24,25].  

• Phase II: Dendritic cells mature and migrate 

and result in release of IFN-γ that will 

eventually show the cell killing by 

antiproliferative [26] and anti-angiogenic 

effects [27], and induces apoptosis [28]. 

Further, the necrotic tumor cells are ingested 

my immature dendritic cells. 

• Phase III: IL-12 and IFN- γ produced by 

NK and macrophages in tumor cells lead to 

the activation of cytotoxicity mediators like 

the perforin, TNF-related apoptosis inducing 

ligand (TRAIL) and reactive oxygen 

[29,30]. This leads to the presentation of the 

tumor antigens on their surface to the naïve 

CD4+ T cells and the production of the 

tumor antigen specific CD4+ and CD8+ T 

cells. 

• Phase IV: Tumor killing by CD4+ and CD8+ 

T cells is the final step of elimination 

process by their recruitment at the tumor site 

producing more IFN- γ. The paradox here is 

that this is the phase where the tumor cells 

are educated that reduces their 

immunogenicity leading to the equilibrium 

phase of immunoediting [14].  

 

Equilibrium 

This is the next phase of immunoediting process. 

This phase is responsible for the development of the 

tumor cells that are resistant to the immune effector 

cells. There are several hypotheses that explain this 

phase. One such hypothesis is the absence of 

inflammatory signals of the immune system to the 

tumor antigens that activate the dendritic cells and 

macrophages of the innate immune cascade reactions 

[14,31–33]. This can lead to tolerance and immune 

selection of the tumor cells [25]. Another theory 

explains that the antigens presenting cells sometimes 

produce anti-inflammatory markers like IL-10 and 

transforming growth factor-β (TGF-β) that fails to 

elicit immune responses [34]. Yet another theory is 

the occurrence of random gene mutations promoting 

tumor [14]. It has also been suggested that the 

immunogenicity can alter based on the type of 

cytokines activated mechanism too that can be 

specific for the type of cancer. Further the immune 

selection also depends on the immunogenic 

capabilities of the original mode of tumorigenicity 

(like the chemical, or viral induction or spontaneous 

induction) or the original host of the tumor in case of 

transplantation [35–38] that has a role making the 

tumor cells more resilient to destruction. This phase 

is the longest phase of the immunoediting process 

spanning over years [15].  

Escape: This phase is where the mutated immune 

selective cells escape the immune system of the host 

leading tumor progression. There may be a few ways 

this happens. The first one may be the alterations 

developed in the signal transduction molecules of the 

effector cells. The primary signal transduction cells 

involved are the T-cell receptors such as TCR–CD3 

complex (specifically the CD3-ζ chain) found on the 

TILs that are responsible for the expression of TA, 

Thelper-1 polarization, upregulation of the IL-10 and 

TGF-β and downregulation of IFN-γ that elicit the 

immune responses [39]. A loss of this complex in the 

tumor cells causes the evasion of the host immune 

system. This kind of evasion is seen in many cancers 

like the pancreatic cancer, renal cancer, and several 

melanomas [40–43]. Further, it has been known that 

TCR-ζ is involved in the apoptosis by activating the 

caspase 3, and downregulation of anti-apoptotic 

factors like the Bcl-xL and Bcl-2. Thus, the loss of 

TCR-ζ can make the T lymphocytes in the tumor 

vulnerable to apoptosis by increasing the FasL 

expression on tumor cells [44–47]. This mechanism 

operates in a vicious cycle. The other way is the 

emergence of the tumor-derived soluble factors 

(TDSF) like vascular endothelial growth factor 

(VEGF), IL-10, TGF-β, prostaglandin E2, soluble 

phosphatidylserine, soluble Fas, soluble FasL and 

soluble MHC class I chain-related A (MICA) 

[48,49,58,50–57] that promote evasion of the 

immune system of the host by the tumor cells. 

Moreover, the overall the presentation of the TA may 

just not be sufficiently enough to activate the 

immune system efficiently to combat the tumors 

[59].  

Neoantigens and their impact on the 
immunotherapies 

In the light of these novel understanding of the tumor 

immunoediting and its interactions with the host 

immune system, there are a new class of therapeutic 

agents developed called the neoantigen-directed T-

cell based immunotherapy. Neoantigens are the 

antigens on the tumor cells that are specifically 
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identified by neoantigen-specific T-cell receptors 

(TCRs). They have known to play an important role 

in T-cell mediated anti-tumor immunity. There is 

evidence in the research conducted proving this fact 

by showing the presence of T-cell recognized anti-

tumor activity against neoantigens, the immune 

check point blockade being affected by the 

neoantigens, the rise of the adoptive T-cell based 

therapies and vaccines developed based on 

neoantigens [60–63]. While neoantigens are specific 

tumor cells, there are other tumor antigens called the 

tumor-associated antigens (TAAs) and cancer-

germline antigens (CGAs) that are expressed both on 

healthy as well as well as the tumor cells [64–66]. 

These two targets of the have shown more tolerance, 

less affinity (because of their low level of 

expression), less specific targetability, more chances 

of autoimmune responses in non-target tissues and 

thus failure of the therapies based on them in 

comparison to the ones based on neoantigens [67,68]. 

Hence, the greatest advantage of neoantigens is that 

they are identified as true antigens by the immune 

system that eliminates all the above drawbacks of 

targeting the TAAs and CGAs [60].   

Jiang et al. have very clearly explained the growth of 

the neoantigens as targets for cancer immunotherapy 

as shown in Fig. 3 [69]. 

There have been several researchers who attempted 

to show the existence of antitumor immunity after a 

second challenge by the tumor. All of them have 

succeeded in proving that the immune system was 

capable of recognizing and eliminating the tumor 

cells after the second exposure by malignant cells 

[70–72]. These findings led to further work in the 

field to understand that T-cells were involved in the 

recognition of these tumors and that they were highly 

specific to the neoantigens [73–75]. They began 

applying neoantigen reactive T-cells as a part of 

therapy to achieve maximum regression in 

melanomas [76,77]. They also found that these 

therapies were active at high levels in the tumors as 

well as the blood for a very long time [78]. To 

maximize the advantages of the neoantigen therapies, 

several novel techniques are being put into practice 

to develop personalized medicine/vaccines for cancer 

treatment like the next-generation sequencing (NGS) 

technology [79–86]. The most recent developments 

in this direction are the checkpoint inhibitors like the 

CTLA-4 and PD-1 inhibitors on the T-cells [87–91] 

that work by allowing enhanced functioning of the 

immune responses using these immune checkpoints 

[92–96]. Like the two sides of a coin, these 

developments can also be not very effective in the 

achieving the goals [97] showing that there is still a 

long road to be explored along [97] and translate 

them to the clinical settings [98]. The same is true 

with the developing of vaccines for cancers using the 

immune checkpoint inhibitors which are on the rise 

and are actively crossing the pre-clinical barriers in 

melanomas [99–101], carcinomas [102,103], 

sarcomas [104,105]. Vaccines are also developed for 

mutation specific antitumor responses. Some of these 

vaccines have gone to the Phase I clinical trials like 

the dendritic cell vaccine for melanoma in 2015 

[106]; the synthetic long peptide vaccine in 

conjunction with PD-1 inhibitor for melanomas in 

2017 [107]; personalized RNA mutanome vaccine 

for melanoma combined with PD-1 inhibitor to 

achieve complete regression of the tumor [108]. 

Further, glioblastomas are explored now with multi-

epitope vaccines [109,110] in the Phase I clinical 

trials. Some of the current clinical trials that are 

based on neoantigen based vaccines for cancer are 

listed in Table 1 [69]. 

Yet another avenue based on neoantigens that is 

explored now is the adoptive T-cell transfer therapies 

(ACT) that are tumor neoantigen specific but are 

manufactured in vitro [62]. These are beneficial in 

the way that do not have immunosuppressive effects 

from tumor microenvironment (TME). On the other 

hand, they also have a disadvantage that it quickly 

becomes dysfunctional too. They are a very effective 

in developing personalized therapies for various 

cancers [111–117]. Needless to say, the ACT also are 

translated to the clinical trials such as the adoptive 

transfer ERBB2 interacting protein (ERBB2IP) 

mutation–reactive CD4+ tumor infiltrating 

lymphocytes (TILs) in 2014 for metastatic epithelial 

cancer, breast cancer [(SLC3A2, KIAA0368, 

CADPS2, and CTSB)-reactive TILs and colorectal 

cancer (mutant KRAS G12D reactive CD8+ TILs) 

[118–121]. These have shown to achieve reasonable 

tumor regression. Further, the vaccine and ACT 

therapies are used in combination with each other 

and with other conventional therapies or 

immunotherapies that are already in place for 

stronger immune responses against tumors [122–

131].  

Conclusion 

In conclusion, we can say that immunoediting is 

posing a serious challenge to immune therapies for 

cancer. However, it is a double-edged sword that not 

only develops immune-resistant tumor variants but 

also can be used to our advantage for developing  



 
Biomedical Letters 2020; 6(1):48-59 

53 
 

 
Fig. 3: History of the tumor neoantigens as immunotherapy targets 
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Table 1: List of current clinical trials for neoantigen based vaccines 
Interventions NCT number Phase Enrollment status Cancer types Combinations 

Neoantigen vaccine NCT03558945 I Recruiting Pancreatic tumor None 

Neoantigen vaccine NCT03359239 I Recruiting Urothelial/bladder cancer Atezolizumab 

Neoantigen vaccine NCT03645148 I Recruiting Pancreatic cancer GM-CSF 
Peptide vaccine NCT03558945 II Not yet recruiting TNBC Nab-paclitaxel, Durvalumab 

Peptide vaccine NCT03929029 I Recruiting Melanoma Nivolumab, ipilimumab 

Peptide vaccine NCT03715985 I Recruiting Solid tumors None 
Peptide vaccine NCT01970358 I Active, not recruiting Melanoma None 

Peptide vaccine NCT03639714 I/II Recruiting Solid tumors Nivolumab, ipilimumab 

Peptide vaccine NCT03956056 I Not yet recruiting Pancreatic cancer Adjuvant chemotherapy 
Peptide vaccine NCT02287428 I Active, not recruiting Glioblastoma Radiation therapy 

Peptide vaccine NCT02950766 I Recruiting Kidney cancer Ipilimumab 

Peptide vaccine NCT03219450 I Not yet recruiting Lymphocytic leukemia Cyclophosphamide 
Peptide vaccine NCT03422094 I Recruiting Glioblastoma Nivolumab, ipilimumab 

DC vaccine NCT03871205 I Not yet recruiting Lung cancer None 

DC vaccine NCT02956551 I Recruiting NSCLC None 
DC vaccine NCT03674073 I Recruiting Hepatocellular carcinoma Microwave ablation 

DC vaccine NCT03300843 II Recruiting Solid tumors None 

RNA vaccine NCT03908671 Not Applicable Not yet recruiting Esophageal cancer, NSCLC None 
RNA vaccine NCT03480152 I/II Recruiting Solid tumors None 

RNA vaccine NCT03468244 Not Applicable Recruiting Solid tumors None 

DNA vaccine NCT03532217 I Recruiting Prostate cancer Nivolumab, Ipilimumab 
DNA vaccine NCT03122106 I Recruiting Pancreatic cancer Adjuvant chemotherapy 

DNA vaccine NCT03199040 I Recruiting TNBC Durvalumab 

 

novel therapies based on the neoantigens produced 

during the immunoediting. This is the age of rapidly 

developing neoantigen based therapies and vaccines 

and their combinations thereof. These novel 

strategies of immune therapy that make use of the 

checkpoint inhibitors must be explored more 

aggressively while considering the possibility of 

developing resistance. A thorough understanding and 

organized extensive research in this area will light up 

a bright future in the field of personalized 

immunotherapy. 
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