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Abstract 
 Repeated expansion of hexanucleotide in C9ORF72 encodes the protein 

Guanine Nucleotide Exchange considered as the main cause of Amyotrophic 

Lateral Sclerosis (ALS). The repeated expansion produces toxic products and 

autophagy deficits. Various in silico approaches were employed for structural 

3D modeling and protein-protein molecular docking analyses of C9ORF72 

followed by virtual screening. Homology modeling and threading approaches 

were applied to predict the 3D structures of C9ORF72 and 92.38% of quality 

factor was calculated by ERRAT evaluation tool. STRING database was 

utilized, and it was observed that SMCR8 has the ability to be the interacting 

partner of C9ORF72. Protein-protein molecular docking analyses of C9ORF72 

with SMCR8 were performed and potential interacting residues were observed 

computationally. FDA library from ZINC database was utilized for virtual 

screening and comparative molecular docking analyses were performed by 

AutoDock Vina. It was proposed that the scrutinized compound ZINC131 have 

strong binding affinities and least binding energy of -11.3 kcal/mol. The 

suggested molecule may be used for further analyses in the drug discovery 

processes. The predicted 3D structure of C9ORF72 provides the structural 

insights for the better functional understanding of C9ORF72. Overall, the 

findings of present work may be helpful in designing the novel therapeutic 

targets against C9ORF72. 
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Introduction 

Amyotrophic Lateral Sclerosis (ALS) was first 

described by Charcot in 1874 [1]. The cause of 

ALS/Lou Gehrig disease is not completely known and 

considered as spontaneously arise [2]. In ALS, upper 

motor neurons and lower motor neurons degenerate 

and die (motor neurons link between the brain and 

voluntary muscles) [3]. ALS affects the nerve cells in 

the brain and spinal cord. The brain lost the ability to 

initiate and control the movement of muscles [4]. The 

gradual decline in strength leads to paralysis of more 

and more muscles leads to death. The genetic cause of 

ALS includes mutation in C9ORF72, FUS, SOD1, 

VCP and TDP-43 [5]. Most of the cases for ALS are 

sporadic and about 25% of people were  suffering for 

ALS due to family history [6]. The sporadic ALS are 

usually to the patients between the age of 55-65 years 

old and only 5% patients are <30 years old. Males and 

females are equally affected by ALS. Juvenile ALS 

(JALS) is a term used for patients below the age of 25 

years [7]. 

Most of the time ALS is autosomal recessive while 

dominant inheritance linked with chromosome 9 [8]. 

ALS is a motor neuron disease characterized by 

muscle twitching [9], muscle stiffness and muscle 

weakness due to a decrease in muscle size. In most 

cases, patient lose the ability to speak, walk, breathe, 

swallow and hand movement [10, 11]. Some patients 

face difficulties in thinking and behavioral acts [12]. 

ALS has no cure yet however early diagnoses may 

help to treat and keep the muscle control little longer 

[13]. The death of ALS patient cause within 3 to 4 

years due to respiratory failure [14]. ALS is related  to 

parkinsonism and dementia [15]. There is no specific 

cure of ALS, moreover Riluzole have considerable 

relax to the patients [16]. Another drug approved by 

FDA for ALS is Edaravone [17]. 

C9ORF72 is localized on chromosome 9 [18]. 

Augmentation of GGGGCC hexanucleotide repeat 

extensively present in C9ORF72 considered as the 

common cause of ALS [19]. A repetition of 

hexanucleotides is considered as the genetic cause of 

almost 10% patients [20]. Guanine nucleotide 

exchange C9ORF72 is encoded by C9ORF72 [21]. 

The structure of C9ORF72 is not known yet. 

C9ORF72 is present on the short arm of the 

chromosome (p) in humans [22]. The length of the 

sequence is from 27,546,542 base pairs to 27,573,863 

base pairs. The protein guanine nucleotide exchange 

C9ORF72 is present in most of the regions of the 
brain, presynaptic terminals and in the cytoplasm of 

neurons [23, 24]. In C9ORF72, there are fewer repeats 

of hexanucleotide GGGGCC as <30 normally 

however in patients of ALS, these repeats are in 

hundreds [25, 26]. These repeats decrease the 

autophagy regulator of protein C9ORF72 alters the 

expression leads to ALS. The lack of C9ORF72 might 

be the cause of disease. C9ORF72 emerged in most of 

the eukaryotes and have single copy of gene encoding 

C9ORF72 [27]. The presence of four nucleotides of 

Guanine and two of Cytosine noncoding part 

repetition cause severe kind of mutational changes 

leads to ALS [28, 29]. In C9ORF72 hexanucleotide 

repetition can cause RNA toxicity through the 

confiscate and collection of RNA binding protein. The 

guanine nucleotide exchange protein has two 

isoforms; one has the sequence length of 481 amino 

acids while the other has 222 amino acids. Repeated 

expansion cause mutation in C9ORF72 leads to ALS. 

The neuronal function of C9ORF72 is unknown. 

C9ORF72 has structural homology with Differentially 

Expressed in Normal Neoplasia DENN [30].  

During the last two decades, the number of known 

protein sequences has increased as compared to 

structures [31]. This unbalance between the protein 

sequence and structure has censoriously limited the 

ability to understand the molecular mechanism of 

proteins [32]. The structure formation rate of known 

protein is much slower as the structure prediction 

techniques (X-Ray Crystallography and NMR) are 

time consuming [33]. The development of structural 

bioinformatics helps to solve the biological 

macromolecules (DNA, RNA and protein) structural 

analyses [34]. There have been many achievements in 

computational drug designing and personalized 

medicine [35, 36]. Various possibilities are present to 

understand neurological disease which plays an 

important role in the medical field [37-39]. The focus 

of current work was to 3D structure prediction, 

evaluation and validation of Guanine Nucleotide 

Exchange C9ORF72 followed by protein-protein 

molecular docking and virtual screening. 

Materials and Methods 

The C9ORF72 have accession number Q96LT7 in 

Uniport Knowledge Base. In this work, 3D structure 

prediction, virtual screening and molecular docking 

analyses were performed. 

The amino acid sequence (FASTA sequences) of  

Guanine nucleotide exchange C9ORF72 was 

retrieved from  Uniport  KB (http://www.uniprot.org/) 

[40]. The sequence was subjected to BLASTp for the 

selection of a suitable template against Protein Data 

Bank (PDB) [41, 42]. The automated program 
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MODELLER 9.20 [43] for homology modeling was 

used to predict the  3D structures of C9ORF72 by 

spatial restraints. The online tools including I-

TASSER [44], RaptorX [45], CPHModel [46], 

HHpred [47], Phyre2 [48], SWISS-MODEL [49], 

MOD-WEB [50], Robetta [51], Sparks-X [52], 3D-

Jigsaw [53] and ESyPred 3D [54]  were also used to 

predict the protein structure. The 3D structures of 

C9ORF72 was visualized by UCSF Chimera 1.13.1 

[55] and PyMOL [56]. UCSF Chimera also used to 

minimize selected structure. Rampage [57], Anolea 

[58], ProCheck [59] and ERRAT [60] evaluations 

tools were used to evaluate the quality of the model of 

protein structure. The produced Ramachandran plots 

for the assessment of predicted structures showed 

residues dispensation and also declared ϕ and ψ 

distribution of non-proline and non-glycine residues. 

For the differentiation of favorable and non-favorable 

regions, phi and psi angles were plotted against each 

other. These angles were used for the assessment of 

different regions. ERRAT evaluation tool was also 

used to calculate the quality factors of predicted 

structures [61]. 

To determine the functional interacting partner of 

target protein, STRING (Search tool for the retrieval 

of interacting genes/proteins) [62] and STITCH 

(Search Tool Interacting Chemical) [63] were used. 

The online server PatchDock [64, 65] was used for 

protein-protein molecular docking and FireDock [66] 

was used for the refinement and scoring of  protein-

protein docking solutions. Gramm-X was also 

employed for protein-protein docking analysis for the 

cross validation of the analyses. LigPlot [67, 68] was 

utilized to analyze the hydrophobic and electrostatic 

interaction and also used to generate schematic 

diagrams of protein-protein interactions. 

PyRx [69] software was used to dock the small 

molecules with macromolecule and virtual screening. 

The blind docking was proceeded to analyze the 

protein and ligand interaction for confirmation and 

orientation. The FDA library of Zinc database [70] 

was retrieved for virtual screening against the target 

protein [71]. 

Results and Discussion 

The study of neurology and structural bioinformatics 

are fields of exploring knowledge and providing an 

effective way for better understanding and 

development of different research approaches for the 

diagnosis, cure and detection of neuronal diseases 

including ALS. The ensemble genome browser was 

used to locate the exact position of C9ORF72 protein-

coding gene in humans (Fig. 1).  

 

Fig. 1: The presence of gene C9orf72 on the position of chromosome number 8. 

It has been observed from extensive literature review 

that Guanine Nucleotide Exchange protein has no 

other reported member in family. The multiple 

sequence alignment (MSA) was performed for two 

isoforms of C9ORF72 carried out by Clustal omega 

[72]. An asteric(*) indicated positions which have 

single, fully conserved residues, colon indicated the 

similar residues and dot indicated the weakly similar 

residues. The positions with no dot indicated non-

conserved residues (Fig. 2). 

Coils, Protparam [73] tools were used to calculate the 

physiochemical properties of the receptor protein. The 

molecular weight of the protein based on average 

isotope masses of the amino acids was also studied. 

The theoretical PI was 5.82 depends on side chains 

determined the pH of the protein. The half-life of the 

protein was calculated 30 hours in vitro. The aliphatic 

index was -0.069, instability index was 50.54 and the 
number of positively charged residues were 50 as well 

as negatively charged residues with total number of an 

atom was also calculated 60 (Table 1) (Fig. 3). 

The PONDR [74] tool was used to predict the ratio of 

natural disorders caused by the mutation in C9ORF72. 

The graph showed the composition of order and 

disorder. The center line was the threshold and peak 

above the threshold identified as disorder while the 

line below the threshold identified as an order of given 

protein C9ORF72 (Fig. 4). 

Structure Prediction 

The 3D structure of C9ORF72 was not reported by X-

Ray crystallography and NMR yet. The comparative 

modeling and threading approaches  
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Fig. 2: Alignment retrieved from the Clustal Omega of the related protein of mouse and bovine with a human which 

shows residues with * (identical) and: (somewhat similar). 

 

 
Fig. 3: Pie chart representation of amino acid composition of C9ORF72 and calculated percentage values. 
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Fig. 4: Disorder residues of Guanine Nucleotide exchange C9ORF72. 

 
were employed to predict the 3D structures. The 

BLASTp was used for the submission of protein 

sequence against PDB for the retrieval of suitable 

templates. Only one template has been appeared 

against the query sequence (Table 2). 

 
Table 1: Calculated features of C9ORF72.  

Features Calculations 

Aliphatic index -0.069 

Instability index 50.54 

Total number of positive charge residues 

(Arg + Lys) 

50 

Total number of negative charge residues 

(Asp + Glu) 

60 

Total number of atoms 7683 

 

All the 50 structures were evaluated on the bases of 

favored region, quality factor, allowed region and 

outlier regions. A comparative graph has been plotted 

to analyze the suitable structure among all the 

predicted structures. The suitable structure was 

selected from the plotted graph (Fig. 5). 

There was variation in the quality factor values of the 

predicted structures and the selected structure of 

Guanine nucleotide exchange C9ORF72 has the 

overall quality factor of 92.38%. The Ramachandran 

plot was employed to evaluate the quality of the 

predicted structures and the selected structure has 

99.60% value of the favored region, 0.40% of allowed 

region. Interestingly, no amino acid was  

 

observed in the outlier region. The energy 

minimization of the selected structure was performed 

to improve the stereochemical properties of the 

predicted structure. The minimization was performed 

by UCSF Chimera 1.13 with 1000 steepest decent and 

1000 conjugate gradient runs (Fig. 6). 

Protein-protein molecular docking 
analyses 

Guanine Nucleotide Exchange expressed in many 

parts of the body specifically expressed in the brain. 

SMCR8, the interacting partner of C9ORF72 was 

analyzed and observed by employing STRING and 

STITCH databases for protein-protein molecular 

docking analyses. Comparative molecular docking 

analyses were done to evaluate the binding residues. 

The docked complexes of SMCR8 and C9ORF72 

analyses predicted the interacting residues and 

analyzed on the basis of ACE [75] by utilizing 

PatchDock (Table 2). Numerous docked complexes 

were generated and then top 10 complexes with least 

ACE values were selected for further refinement 

through FireDock. The docked complexes were 

evaluated on the basis of least binding global energy. 

The molecular docking analyses suggested that 

SMCR8 and C9ORF72 have effective binding affinity 

[76]. The interacting residues were analyzed through 

UCSF Chimera (Table 3) (Fig. 7).

    Table 2: BlastP against PDB. 
Description Max score Total score Query Coverage E-Value Identity Accession 

Cap-Associated protein CAF20 27.3 27.3 4% 7.84 5.83% 6FC3 
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Fig. 5: Graph of quality factor, favored region, allowed region and outliers region of the C90RF72 structure prediction 

analyses evaluated through different software. 

 
Fig. 6: 3D structure of ALS associated protein Guanine Nucleotide Exchange C9ORF72. 
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       Table 3: Protein-protein interacting residues. 

Interacting Protein Interacting protein residues Targeting Protein Targeting protein residues 

 

SMCR8 

LYS 15, GLN 21, TYR 24, 

GLN17, LEU 18, ASN 20, 

ALA 19, ARG 43, ASN 23, 

TYR 39, LYS 42, GLU 36, 

GLY 35, SER 34, ARG 33, 

LYS 5, TYR 54 

Guanine 

Nucleotide  

Exchange 

C9ORF72 

PRO 467, THR 470, TYR 469, GLY 

465, PHE 462, PHE 464, SER 361, 

VAL 384, PRO 389, LEU 402, SER 

395, ALA 399, LEU 403, ARG 407, 

GLN 400, SER 392, ARG 329, TYR 

326, LEU 391 

Molecular docking analysis 

The FDA library of ZINC databases was screened by 

using AutoDock Vina. After screening the FDA 

library of ZINC database, top ranked 4 compounds  

 

 

 

were observed. Comparative molecular docking 

analyses were done by utilizing AutoDock Vina (Fig. 

7). 

 

Fig. 7: Protein-Protein docking analysis and the interacting residues. 

The generated docked complexes were ranked on the 

bases of least binding energy. The screened 

compounds showed similar binding domain. The 

selected compound may have potential against 

C9ORF72. The variation was observed in analyzed  

 

complexes having least binding energy. The 

compound ZINC131 showed least binding energy of -

11.3 kcal/mol and 2D structure of the least binding 

affinity were develop from the ChemDraw Ultra 8.0. 
A plot of ligand-protein interactions was analyzed by 

employing UCSF Chimera (Fig. 8). 



 
Biomedical Letters 2020; 6(2):138-148 

145 
 

 
Fig. 8: The interactions of top ranked compound with C9ORF72. The residues analyzed from AutoDock Vina and 

UCSF Chimera. 

 

 
Fig. 9: 2D structure of least binding affinity compound from the molecular docking. 

 

The function of protein depends on protein structures. 

The structural bioinformatics opens the way towards 

more progress in the analyses of protein function. The 

computational method of structure prediction is less 

time consuming [77]. The era of computational 

biology which is necessary for the prediction of 

function contributes well in the way of research.  

Conclusion 

By employing computational approaches and in silico 

analyses, the analyzed molecules showed binding 

residues in conserved region by AutoDock Vina. The 

in silico molecular docking analyses proposed that 

binding residues are significant to control the 

expression of C9ORF72. The observed results 

suggested that the selected molecule could be used for 

novel chemical compounds. 
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