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Abstract 
Parkinson’s disease is the second age related neurodegenerative disorder, 

affects almost 10 million people worldwide. Sporadic cases of PD resulted 

from aging and environmental factors while familial cases resulted from 

mutations in LRRK2, SNCA, PRKN, GBA, UCHL1, DJ-1, and PINK1. 

However, some genes mutations are not inherited (sporadic). Computational 

approaches played a major role in the development of drug used in clinical 

practice. These computational methods have evolved with the experimental 

methods that underpin the development of novel compounds against disease. 

In this review article we elaborate mechanisms of gene variants involves in 

Parkinson’s disease, to epitomize computationally derived inhibitors against 

these variants, utilizing in silico approaches to find the molecules and explain 

the effect of particular molecule binds with target molecules. 
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Introduction 

Parkinson Disease (PD) was expressed by James 

Parkinson about 2 centuries ago in 1817 having 

irregular muscular power. From 100,000 people 

worldwide, almost 35 new cases expressed every year 

[1, 2]. PD is an escalating neurodegenerative disease 

caused by characteristic motor symptoms of rhythmic 

shaking in hands, arms, head legs, and improper 

postural balance [3]. The symptoms of PD include 

cortico-balance degeneration (CBD), multiple system 

atrophy (MSA) and synucleinopathies (tauopathies). 

The accumulation of top ranked proteins having 

deteriorating neuron and glia lessen the PD [4]. There 

are peculiar neuropathological changes in brain in PD. 

The irregular proteinaceous spherical bodies called 

Lewy bodies are formed [5]. In substantianigra Lewy 

bodies (which contain α-synucline) and loss of 

dopaminergic neuron facilitate the reduction of  

voluntary movement which is a significant 

neuropathological finding [6]. The causes of PD 

include genetic cause, environmental factors, aging 

and the genetic causes may include mutation in single 

gene (Fig. 1).  

Numerous genes are involved while VPS35, SNCA 

and LRRK2 are autosomal dominant and DJ1, parkin 

and PINK are recessive [7]. The dysregulation in  

DJ1,PRKN, PINK1, LRRK2, SNCA, VPS35 and 

GBA genes lead to PD [8]. The environmental factors 

include oxidative stress, passive smoking, strenuous 

exercise, plasma urate and traumatic brain injury [9]. 

The  dopaminergic neurons damage in the pars 

compact (portion of SN which is medial to pars 

reticulate) of substantianigra (structure in midbrain 

that involve in movement) involve in motor symptoms 

and olfactory impairment include in non-motor 

symptoms [10, 11]. There are six neuropathological 

disease changes in PD. The first two pre-symptomatic 

stages of PD are the inclusion bodies pinched to 

medulla oblongata and olfactory bulb. In third and 

fourth stages, the substantianigra and other nuclei of 

the midbrain and forebrain become ostentatious with 

the continuation of the disease. At this stage, the 

patients begin to show clinical symptoms of PD. In 

last two stages, neocortex show various symptoms 

[12].  

Although, the degeneration of dopaminergic 

nigrostriatal neurons with Lewy bodies is significant 

correlate of motor dysregulation in PD, however the 

damage in cytoskeleton of other nerve cells 

tryptaminergic, adrenergic, cholinergic glutamatergic, 

GABA-ergic, and noradrenergic nerve also observed 

in PD [13]. Many FDA approved are available for the 

treatment of typical Parkinson’s disease (Fig. 2). 

Computer aided drug design use in rational drug 

design aims at to reduce the time to analyze and 

develop drugs and to determine target for novel drug 

candidates. It is useful for proximate design of 

prodrugs. The first step of drug design is to identify 

the appropriate target molecule linked with a disease 

(Fig. 3) [14].  The computational approaches used in 

disclosure of therapeutic compounds [15]. By using a 

broad area of  computational approaches  computer 

aided drug designing linked with  medicinal chemistry 

and drug discovery, which surpasses both practical 

applications and novel methodologies [16]. Although, 

the conventional approaches has expensive trial 

procedures [17].  

Various computational approaches utilized for drug 

designing including structure-based drug designing. 

This approach necessitate recognition  of an 

appropriate protein target [18, 19]. A typical structure 

based drug designing  is begin with the identifications 

and corroboration of the structure [20]. X-ray 

crystallography and Nuclear Magnetic Resonance 

(NMR) are employed for 3D structural prediction 

through experimental analyses. Homology modeling 

is an infallible method to determine the computational 

3D structure predictions. Virtual screening has been to 

scrutinize different compounds by screening large 

chemical libraries [19, 21, 22]. Different databases 

such as ZINC and ChEMBL  are used for virtual 

screening [23, 24]. Usually, structure based virtual 

screening is performed on the 3D structure 

experimentally solved through X-ray crystallography 

and NMR while ligand based virtual screening is 

employed for computationally predicted structures 

[25, 26]. De novo design is  used to design the novel 

compounds [27]. 

 Ligand based drug designing is utilized to develop 

therapeutically active compounds in order to observe 

such molecule that are interrelate with target [28].The 

function of a protein depends on its structure and 

Quantitative structure-activity relationship (QSAR) 

utilized to study the association between the structure 

and function [29]. Comparative molecular field 

analysis (CoMFA), an  approach of 3D QSAR is 

widely used [30]. Pharmacophore represents a 

conceptual model to describe the structure binding  

affinity relationship [31]. Computational drug 

designing includes to identify the active binding site, 

screening of chemical libraries to identify potent hit 

molecule, to optimize  
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Fig. 1: Genetic mutation, environmental factor and oxidative stress induce dopaminergic cell death which causes 

movement disorder. 

 
Fig. 2: FDA approved drugs for the treatment of Parkinson's disease 
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Fig. 3: Schematic representation of drug discovery process. 

 

Genetics of Parkinson’s disease and 
computational drug designing 

It has been reported that mutations in the, PINK1, 

PLA2G6, DJ1, PRKN, ATP13A2, FBXO7, SYNJ1, 

DNAJC6, VPS13C, C19orf12, RAB39B, LRRK2, 

SNCA, VPS35 and UCHL1 are involved in PD [33]. 

GBA is considered as a risk gene of PD [34]. VPS35 

mutations are rarely   cause PD [35]. There has been 

limited literature available for PINK1, DJ1, PRKN 

[36]. SNCA, PINK1, LRRK2, PRKN and DJ1 (Table 

1) are most common causative genes involved in PD 
[37]. In this review article, 9 genes (PRKN, PINK1, 

DJ1, ATP13A2, LRRK2, SNCA, VPS35, GBA and 

UCHL1) will be discussed. However, computational 

work on UCHL1, GBA, VPS35 and PRKN is a 

challenge in computational drug designing. 

The mutation in Leucine-Rich Repeat Kinase 2 

(LRRK2) have significant involvement in the cause of 

PD [66]. ROCO protein family has multi-domain  

 

 

 

serine-threonine repeat kinase [67]. LRRK2 encoded 

the dardarin protein. The leucine-rich region of 

dardarin has large number of amino acids. These 

regions are interacting with other proteins through 

signal transduction. The interaction of phosphate 

groups in proteins known as phosphorylation that 

helps the brain for cell manufacturing processes leads 

to the enzymatic function of dardarin as kinase 

activity. The large amount of protein formation leads 

to the autophagy of the cells through phosphorylations 

[66]. LRRK2  encodes a protein of 2527 amino acids 

[68]. Several cellular and signaling pathways 

including mitochondrial function, retromer complex 

modulation and autophagy regulation are associated to 

LRRK2 [67]. LRRK2 is responsible for PD which 

inherit in autosomal dominant pattern [69]. In both 

inherited and non-inherited PD cases, missense 

mutations are present in case of LRRK2. The decrease 
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in LRRK2 kinase activity can be determined by using 

systematic computational approaches. The drug 

resistance can be identified by using 3D structures of 

LRRK2 functional domains. In both wild and mutant 

conformations, the binding efficiency of L-dopa is 

analyzed followed by virtual screening to determine 

small molecules. The binding efficiency of recently 

identified inhibitors can be analyzed through 

Molecular Dynamics (MD) simulations [70]. 

  

 
Table 1: Summarized PD related genes and computationally derived drugs against variants. 

 

The selective and brain-permeable LRRK2 inhibitors 

can be designed with vast efforts which could be a 

good treatment option for PD [71]. A guanosine 

triphosphate hydrolase (GTPase) domain (Ras of 

complex – ROC) and an adenosine triphosphate 

(ATP)-utilizing kinase are two distinct but 

functionally related enzymatic domains of ROCO 

protein family (Fig. 4). Among the 50 reported 

mutations of LRRK2, G2019S point mutation is the 

most common pathogenic mutation. The pathogenic 

mutations has been classified as gain-of-function 

mutations because it enhance the LRRK2 kinase 

activity [72]. The degeneration and death of brain cells 

could stop by removal of phosphorylations which 
binds with ribosomal s15 and protein production can 

be blocked by regulating low dose of anisomycin. The 

study of structural, functional and mutational analyses 

of LRRK2 could be helpful in drug designing. A series 

of 2,4_diaminopyrimidine inhibitors developed by 

using homology modeling aim to  develop brain 

permeable highly effective and selective LRRK2 

inhibitors [43]. 2-anilino-4-methylamino-5-

chloropyrimidine and HG-10-102-01 are considered 

as the effective inhibitors of wild-type LRRK2 and 

G2019S mutant [44]. An application of 160 cell 

permeable and ATP competitive kinase inhibitor for 

LRRK2 de-phosphorylation at serine cluster such as 

Ser910/935/955/973 shows positive results [36]. In 
silico modeling used to generate mino-pyrimidine 

GNE-7915 and has been accounted as effective, brain-
penetrant and non-toxic inhibitor of LRRK2 [46]. 

Gene name LRRK2 SNCA PINK1 PRKN DJ1 

Cytogenetic 

location 

12q12 4q21 1p35-p36 6q26 1p36.23 

Locus PARK8 PARK1 and 

PARK4 

PARK6 PARK2 PARK7 

Protein Leucine-rich 

repeat protein 

kinase 2 

Alpha-synuclein 

 

PTEN-induced 

putative kinase 1 

Parkin Parkinson’s 

disease protein 

Inheritance pattern  Account for ~7% 

familial 

worldwide and 

Sporadic 

autosomal 

dominant (AD) 

PD 

Account for 

familial and 

closely 

resemblance with 

sporadic 

Autosomal 

dominant (AD) PD 

Cause autosomal 

recessive (AR) 

early-onset PD and 

account for 

familial and 1-4% 

sporadic PD 

Account for about 

50% of familial 

and 18% of 

sporadic autosomal 

recessive (AR) 

early onset in 

Europeans.   

Cause familial 

more than sporadic 

PD and account for 

about 0.4% early 

onset autosomal 

recessive (AR) PD 

Functions Scaffolding 

protein, 

Contribute 

toward the 

neuronal cell 

death  

Regulate glucose 

level, dopamine 

synthesis. 

 chaperone 

activity. 

Maintain 

mitochondrial 

integrity and 

functions 

 

Function in 

respiratory chain, 

mitophagy and 

mitochondrial 

dynamics 

Transcriptional 

regulation, 

antioxidant 

response, and 

chaperone 

functions  

Mutations G2019S  

12020T mutations 

 A30P, E46K, 

H50Q, G51Dand 

A53T  

 Non-sense, 

missense and 

frameshift 

mutations are 

common 

 

Rearrangements, 

deletions or 

insertions, 

although point 

mutations have 

been also reported 

Leu166Pro, 

Ala104, Glu163, 

Met26, Glu64 and 

Asp149 

 

Computationally 

derived drugs 

LRRK2 inhibitors 

 

Mitoquinonemesy-

late and 

Ubiquinone-10 

 

L-DOPA 

 

   ----- 

Bacoside-A and  

L-DOPA   

References  [36, 38-47] [39, 47-54]  [33, 39, 47, 55-59] [33, 39, 47, 55, 60] [33, 47, 56, 61-65] 



 
Biomedical Letters 2020; 6(2):164-176 

169 
 

 
Fig. 4: LRRK2 domain structure and PD linked mutations 

 

SNCA was first reported gene involved in PD (alpha-

synuclein) having missense mutation. The encoded 

protein, alpha-synuclein forms toxic oligomers and 

accumulate in the neurons that eventually visible as 

Lewy bodies, which perform a significant role in the 

molecular origination and development of PD [73]. It 

is mainly found in the presynaptic terminals of neuron 

cells, made up of 140 different amino acids that 

attaches the protein to membrane[54]. Alpha-

synuclein is capable of adopting different structural 

conformations formed by low pH, heat, organic 

solvent and metal ions. It is an unstructured and 

unfolded protein and the product of chameleon 

proteins. Structurally, alpha-synuclein has three 

regions. C-terminus balances the aggregation of 

alpha-synuclein, the central NAC region which is 

highly hydrophobic and the N-terminal region is 

concerned with lipid binding [74].  

A18T, A29S, A30P, E46K, H50Q, G51D, A53E, 

A53T are the eight different mutations involved to 

cause PD. The most common 5 missense mutation are 

A30P, E46K, H50Q, G51D and A53T (Fig. 5), 

promotes α-Synuclein aggregation. The 

oligomerization enhanced by A30P mutation whereas 

aggregation process is reduced by G51D and A53E 

mutations. Alpha-synuclein gene cause familial PD in 

rare cases however sporadic Parkinsonism is mainly 

caused by the aggregation of synuclein [74]. SNCA 

duplication accounts for 1-2% of PD cases [75]. The 

alpha-synuclein protein investigated at the mutated 

level to elucidate the novel molecules. The modeling 

of the mutated structures followed by structure-based 

pharmacophore prediction reported antioxidants 

compounds such as Mitoquinonemesylate and 
Ubiquinone-10. Hydrogen bond donor/acceptor, 

hydrophobic, aromatic features were also determined. 

Virtual screening was done to scrutinize the best hits 

from the Drug bank database [54].  

The activation of parkin occurs through the 

phosphorylation of PINK1 (PTEN-Induced Kinase1). 

The mitochondrial degradation by mitophagy occurs 

through signals provided by ubiquitylation of 

substrates chains of parkin at outer mitochondrial 

membrane (OMM) [76]. It provides protection to 

neurons against damaged mitochondria [77]. PINK1 

kinase activity is significant as PINK1 mutations are 

mostly present in kinase domain [76]. During 

mitochondrial internal control, PINK1 and parkin 

functionally cooperate to identify, label and remove 

the damaged organelles [78]. By various molecular 

methods, missense mutation in PINK1 can interfere 

with mitochondrial internal control [79]. The loss of 

function occurs due to instability of transcript in 

PINK1 p.Q456X at protein level [80]. Almost like 

PINK1 wild-type, mutant p.G411S on damage forms 

dimer at OMM [81]. The novel p.1368N mutation is 

described by complete inspection of PINK1 regulation 

and designing of drug using clinical approaches. On 

mitochondrial stress, the stability of p.1368N is 

seriously damaged. The polish family having p.1368N 

mutation, the blood and skin specimens were retrieved 

and observed the parkinsonian traits on dominant side 

[59]. 

PRKN encoded the parkin RBR E3 ubiquitin protein 

ligase having 465 amino acids. The loss of function 

causes mitochondrial dysfunction, impaired 

mitophagy and accumulation of proteins [82, 83]. 

RING0, RING1, In-Between-RING (IBR) and 

RING2 are four zinc coordinating domains in parkin 

linked to N-terminal Ub-like domain and form a core 
(RORBR). PINK1 activates parkin and depolarization 

damaged the mitochondria and phosphorylates 

adjacent Ub. The attachment of parkin to phospho-Ub 
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helps in PINK1 phosphorylation of parkin Ubl (Ub-

likedomain) and activates parkin [84]. In PD patients, 

about 16.4% and 17.2% mutations are reported in the 

RING and REP domains of parkin having 10.2% and 

11% are disease-causing. Parkin performs several 

cellular functions including mitophagy, vesicle 

trafficking and cell cycle [83]. Parkin saves the 

degeneration of dopamine (DA) neurons [85]. Parkin 

is restricted particularly to cytosol, however 

endogenous parkin is present relatively in a small 

proportion within the mitochondria and also outside 

the mitochondria. Parkin played a regulatory role in 

mitochondria by promoting the removal of damage 

mitochondria through mitophagy [86].  

In 2003, a genic form of PD were first identified in 

Deglycase (DJ1) or PARK7 (Parkinsonism 

Associated Deglycase), 189 amino acid. DJ1 located 

at chromosome 1(1p36.23), and 20kDa [65, 87, 88]. 

DJ1 contributes to the oxidative stress response [89]. 

The autosomal recessive PD caused by DJ1 due to 

Leu166Pro (L166P) mutation (Fig. 6) that weakens 

the dimer resulting in low protein level by promoting 

DJ1 degradation [87]. The sporadic type of PD is due 

to the mutated DJ1 which demonstrates reduced 

nuclear localization and translocation to 

mitochondria. DJ-1 isoforms were determined 

through homology modeling [90].  

 

 

 
Fig. 5: Genomic structure of alpha synuclein protein and PD linked mutations 

 

DJ1 is a significant target for developing new 

therapeutic agents due to its characteristic of oxidative 

sensor. In rat PD models, the dopaminergic neurons 

protected by using the recombinant wild-type DJ1. 

The treatment of L-DOPA is normally given to PD 

patients having signs as tremors, rigidity, abnormal 

thinking, perceptions and cognitive decline [65]. By 

using various computational methods, the interactions 

between DJ1 and ligands, Bacoside-A and L-DOPA 

were studied. The molecular docking studies revealed 

that Bacoside-A interacted at the reported binding site 

and binding atomic coordination were evaluated with 

the template complex coordination. The analyses of 

active binding sites against DJ-1 and molecular 

docking analyses of Bacoside-A with active binding 

site showed potential target site. The treatment of  

 

neurodegenerative disorders can be done by using in 
silico method for identifying ligands by means of 

practical software and online tools [64]. 

GBA encodes G case, 497 amino acids encode for 

glucocerebrocidase (G case) located at chromosome 

1(1q21), is a risk factor for sporadic PD. G case 

concerned with the metamorphosis of 

glycosylceramide and involves in the endo-lysosomal 

pathway. The mutations in GBA inclined to fold 

incorrectly leads to nonfunctional G case [91-93]. 

The homozygous mutation in GBA has been linked 

with Gaucher disease, considered as associated with 

PD [92, 94]. A single heterozygous mutation in GBA 

regarded as linked with  PD [34].Improper G case 

activity causes accumulation of alpha-synuclein [94]. 

GBA are not  performed its function appropriately in 

the endoplasmic reticulum due to mutations and 

creates amass of protein in cellular cavity causes cell 

death [95]. K198T, E326K, T369M, R496H, V394L, 
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D409H, L444P, and N370S are the variants of GBA 

(Fig. 7). However, N370S and L444P are common 

[96].MD simulations showed that NN-DNJ is suitable 

against protein with N370S mutation.  

Ambroxol has shown significance performance 

against N370S and L444P mutations [91]. Through, 

high throughput screening lead compounds 

NCGC758 and NCGC607 showed potential for 

therapeutic development [97]. 

  

 

 
Fig. 6: Schematic representation of DJ1 showing the location of mutations identified in PD 

 

 
Fig. 7: Schematic representation of GBA showing the location of mutations identified in PD 
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Vacuolar Protein Sorting-associated protein35 

(VPS35), a causative genes linked with familial and 

sporadic autosomal dominant PD encodes for a 796 

amino acid subunit of membrane recycling retromer 

complex with a relative molecular mass of 92kDa [35, 

47, 98]. Retromer present throughout the neuron 

involves in recycling of transmembrane protein [99], 

endosomal sorting and protein trafficking. It also 

involves in the transportation of protein in 

mitochondria during autopahgosome formation [100]. 

The mutation in VPS35 leads to abnormal trafficking 

cause PD and also causes disturbance in the function 

of mitochondria and dopaminergic cell loss [101]. The 

mutations in VPS35 occur due to improper binding of 

WASH (WASP and Scar homologue) complex. D620 

(VPS35 mutation) decreases the capability of VPS35 

to cohere with WASH complex and disruption of 

endosomal sorting and endosomal recruitment of 

WASH complex. Improper WASH binding reduced 

the autophagosome formation. The overexpression of 

D620N VPS35 disrupts the trafficking of GluR1 that 

changed the synaptic transmission. VPS35 mutation 

disrupts the mitochondrial dynamics and functions. 

D620N, P316S, R524W, L774M, R32S, I560T, 

H599R, M607V, 551S are the variants of VPS35 

linked to PD. D620N occurs in high frequency [99]. 

VPS35 variants responded well to L-dopa [102]. 

UCHL1 encodes 223 amino acids enzyme called 

Ubiquitin C-terminal hydrolase L1 [103, 104]. A 

copious protein in the brain with cytogenetic location 

at 4p14. The mutation in UCHL1 causes reduction in 

the catalytic activity of enzyme called hydrolase, 

which disturb Ubiquitin proteasome system, involves 

in protein catabolism and contribute to the late-onset 

form of PD [93, 105, 106]. UCHL1 harbor 193M and 

S18Y PD [107]. The whole exome sequencing 

identified two new UCHL1 variants called Arg178Gln 

and Ala216Asp [106]. α-synuclein protein degraded 

and cause the formation of  Lewy bodies due to 

variations in ubiquitin proteasomal system [108]. 

In 2006 in Chilean family, a PD associated gene 

recognized named ATP13A2. It comprises 1180            

amino acids, responsible for the production of 

lysosomal p-type ATPase, come out with revelation of 

Kufor-Rakeb syndrome (KRS). ATP13A2 mutation 

confer to neuronal ceroid lipofuscinoses (NCLs) [109, 

110] and highly expressed in substantianigra. The key 

function of ATP13A2 is to regulate the cation 

homeostasis [111]. Mutations in ATP13A2 contribute 

to the Juvenile and early-onset form of PD which 

disturbs the lysosomal function, leads to 

mitochondrial dysfunction. p.I441F and p.A1069T are 

the variants of ATP13A2 [47, 112]. ATP13A2 

prevents the alpha-synuclein assemblage, so mutation 

promotes the overexpression of alpha-synuclein 

resulting in cell death [113]. The abnormal 

accumulation of cations like manganese, zinc, iron ad 

cadmium  can cause neurodegeneration because 

ATP13A2 involves in trans membrane transport of 

these cations [114]. 

Bioinformatics and drug designing 

This is an era of Big Data with scientists producing a 

vast amount of data using bioinformatics. 

Computational methods used in computational drug 

designing for target identification, lead identification 

and optimization utilized bioinformatics tools and 

databases. Bioinformatics employing computational, 

mathematical and statistical ways is a very recent 

emerging interdisciplinary science that finds the 

solution of biological problems. The methods of 

designing new drugs using bioinformatics tools have 

opened up a new field of research [115, 116] . The 

growing demand for additional drug design in the 

short term with minimal risk is leading to greater 

interest in bioinformatics. Bioinformatics tools can 

provide knowledge about possible nucleotide and 

protein sequence information, types of protein 

expression data, disease relatives, variations, 

homology, map information and structure information 

which helps in designing novel inhibitors against 

neurological disorders [117, 118]. 

Conclusion 

Parkinson’s disease is a challenging disease as it 

affects the neuron, which is the building block of 

human nervous system. Computational drug 

designing techniques focused to identify new drug 

candidates utilizing in silico techniques to identify 

new compounds as therapeutic agents. Emergence of 

computational drug designing offer 

more opportunities to understand Parkinson’s disease. 
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