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Abstract 

All key families of plant-infecting fungi have been observed to be infected 

by mycoviruses, which are substantial and ubiquitous viruses. 

Mycoviruses, like all other plant and animal viruses, must reproduce in 

live cells. These viruses spread either during spore production or cell 

division. Few mycoviruses are known to have a positive single-stranded 

RNA genome, while the majority have double-stranded RNA genomes. 

Few mycoviruses have been identified as the causative agents of triggering 

atypical pigmentation and sporadic growth to alter the sexual reproduction 

of the host. These viruses are categorized into taxonomic groups as 

developed from plant viruses. mycoviruses are notable due to their 

amazing capacity to cause a dramatic decrease in the virulence 

(hypovirulence) of the host. It has been observed that mycoviruses do not 

necessarily cause hypovirulence, but they also impart hypervirulence to 

the host fungi. The current effort summarizes the data regarding mycoviral 

diversity, taxonomy and their role in the pathogenesis of pathogenic fungi. 
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Introduction 

Mycoviruses typically infect different classes of fungi 

and are observed to be in association with pathogenic 

fungal agents, especially infecting plants. These 

viruses are commonly associated with all major phyla 

of fungi. These viruses exist in the dormant phase and 

infrequently cause ailment [1-3]. With notable 

exceptions, mycoviruses are still less thoroughly 

researched than viruses that attack plants and 

mammals. Mycovirus illnesses have little economic 

impact, the fungal research group is comparatively 

small, as well as most of the mycovirus illnesses are 

silent. The intensity of mycovirus investigation, 

though, has significantly accelerated in the last years 

as a result of the growing curiosity about 

mycoviruses. In their hosts, this phenomenon has 

been prompted, in particular, by a rise in studies of 

mycovirus-induced morphological modifications, 

which are thought to be both intrinsically intriguing 

and potentially useful [4]. Advanced technologies in 

molecular mycovirus have shown the usefulness of 

mycoviruses as instruments for examining the 

processes driving fungal physiology and controlling 

the fungal host. The ability to easily manipulate the 

genetic makeup of both a virus and its eukaryotic 

target is a unique capability thanks to developments 

in the genetics of filamentous fungi. In the host fungi, 

some mycoviruses are observed to impart noticeable 

modifications, such as asymmetrical development, 

metamorphosed sexual reproduction and anomalous 

coloring [5, 6]. Hypovirulence is the utmost 

significant feature they display the capability to 

decrease the virulence of infective fungi [1, 7-10]. 

The occurrence of mycoviruses opens up the gates in 

the field of investigational mycology.  

History of Mycoviruses 

Siden and Hauser [11] first identified a disease in the 

cultivated fungus Agaricus bisporus in 1950. This 

mushroom resulted in irregular fruiting bodies, early 

tissue deformation, and a subsequent decrease in 

yield [7, 12, 13]. Following this, Hollings and 

colleagues discovered three more anatomically 

unique viruses linked to ill mushrooms [14-16]. 

Mycoviruses were found in A. bisporus in substantial 

numbers between 1962 and 1966, according to 

reports. Mycovirus evidence, other than that of A. 

bisporus, was documented before 1968. As early as 

1936, probable evidence for the yeast virus was 

presented [17]. In fungal groupings, numerous more 

viruses have been found. These mycoviruses were 

found in two different Penicilium species (Penicilium 

stoloniferum and P. funiculosum). Mycoviruses are 

noticed to have traits in common including both 

plants and animals; however, they also exhibit some 

unique traits. For example, they lack motion proteins, 

spore formation, intracellular transmitting behavior, 

and extracellular ways of disease that are necessary 

for plant and animal viruses to accomplish their life 

cycles. According to some taxonomist accounts, 30% 

of mycoviruses have positive-sense single-stranded 

RNA (+ssRNA) genomes, while the majority of 

mycoviruses have double-stranded RNA (dsRNA) 

genomes [18-20]. A Gemini group virus associated 

with mycoviruses has been newly informed [7, 21, 

22].  

Diversity of Mycoviruses 

Mycoviruses are recognized for root infection in 

many different phyla of fungi, including 

Basidiomycota, Ascomycota, Zygomycota, 

Chytridiomycota and Deuteromycota [23, 24]. 

Mycoviruses infecting Basidiomycota 

Mushroom growers noticed a widespread issue in the 

1950s, which they dubbed "The illness in the 

harvest". The deformed shape and drastically 

decreased yields of the affected mushroom were 

visible. A Laccaria laccata sporophore abnormality 

was identified in Czechoslovakia by Blattny and 

Pilate [25]. When irrigated on a healthy developing 

sporophore, extract from a diseased sporophore 

causes aberrant sporophores to proliferate in the 

following years. While a typical sporophore carried 

on growing and producing mycelium that was 

normally productive  [26]. Cantharellus 
infundibuliformis, C. cibarius, and Armillaria mellea 

all showed the same abnormalities, but no viral 

particles were found [26, 27]. 

Mycoviruses infecting Rhizoctonia species 

The significant soil-borne fungal pathogen 

(necrotrophic) Rhizoctonia solani have its place in the 

family basidiomycetes [28, 29]. Though, different-

sized dsRNA aspects were noticed in normal progeny 

in AG1 to AG-13 whereas characterization of just 4 

mycoviruses was done. Two dsRNA genomes having 

sizes of 6.4 kb and 3.6 kb, correspondingly were 

isolated from strain Rbs 1A1 of R. solani AG-3. M1 

showed phylogenetical relation with Bromoviruses of 

plants and was found to be linked with improved 

potency and pathogenicity. While M2 was found 
associated with Mitoviruses and known to cause 

hypovirulence [30, 31]. The Rhs 717 virus was 
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purified from Rhs 717 strain of R. solani. AG-2 was 

identified as a Partitivirus [32]. 

Rhizoctonia solani infecting mycoviruses 

The primary dsRNA component in R. solani was 

originally defined by Castano and Butler [33]. Since 

then, several investigations have been executed to 

determine the varied particles of viruses that infect R. 

solani. 

Mycoviruses infecting fungi imperfection 

This category of fungi is much significant for their 

reputation in the synthesis of antibiotics. For 

example, antiviral features are found in filtrate 

attained from various species throughout the past 

years for instance, P. stoloniferum [44-46], P. 
funiculosum [47-49], P. cyclopium [50-52], P. 

cyaneo-fulvum [53, 54] and Aspergillus niger [55-

57]. Lampson et al. [58] recognized virus-like 

particles in P. funiculosum in some statolon 

preparation [59]. The Department of Biochemistry, 

Imperial College London showed that P. funiculosum 

and  P. stoloniferum were infected by a virus 

comprising dsRNA, which was known to initiate, in 

mice, the production of interferon [60]. 

Ascomycota infecting mycoviruses 

The rest of the viruses mentioned, except for the 

fungus virus, are thought to be isometric. 

Ascomycetes Peziza astracoderna included lone rod-

like particles [61]. Some isolated, highly purified 

apothecia had stiff, TMV-like 17×350 nm rods. 

However, their vaccination did not result in TMV 

indications. The virus was distinct from TMV 

antigenically [62]. Additionally, aberrant yeast was 

shown to contain virus-like particles [63]. They had a 

bilayer membrane and were 100 nm thick. They were 

unique in comparison to other fungi viruses. 

Mycoviruses infecting Cryphonectria parasitica 

Cryphonectria parasitica, an ascomycetes fungus, 

causative agent of chestnut blight [64, 65], which has 

been a catastrophe for Castanea dentata (American 

chestnut) in together North America as well as 

Europe [66, 67]. Cryphonectria hypovirulence virus-

1 CHV1 is hypovirulence-related mycovirus of the C. 

parasitica and it was initially investigated in 1991 

[68-70]. Knowing the biological features of CHV1, 

International Committee on Taxonomy of Viruses 

(ICTV) recognized a new family Hypoviridae [71, 

72]. Hypoviridae contains only one genus of 

Hypovirus. Family Hypoviridae contains four species 

that were isolated from Cryphonectria parasitica, 
that belongs to the genus Hypovirus and are 

designated as C. hypovirus 1 [73, 74], C. hypovirus 2  

[75], C. hypovirus 3 [76] and C. hypovirus 4 [77]. The 

influence of C. parasitica on the virulence of these 

species was dissimilar. Three more viruses besides 

these hypoviruses were identified in C. parasitica. 

Two of these viruses were Cryphonectria parasitica 

mycoreovirus 1 isolated from hypovirulent strain 

9B21 and Cryphonectria parasitica mycoreovirus 2 

isolated from hypovirulent strain C18 [78]. Third 

isolated virus was Cryphonectria parasitica 

mitovirus 1, belonging to the mitovirus of 

Nanoviridae, identified from hypovirulent strain 

NB631 [79]. 

Mycoviruses infecting Sclerotinia sclerotiorum  

Ascomycetous plant pathogenic fungus Sclerotinia 

sclerotiorum infects more than 300 types of plant 

hosts [8]. Sclerotinia sclerotiorum swarms many 

mycoviruses, together with single-stranded circular 

DNA mycovirus, ssRNA viruses and dsRNA viruses 

[80]. The primary DNA mycovirus that was known to 

cause infection and confer reduced virulence to fungi 

was S. sclerotiorum hypovirulence-associated DNA 

virus 1 (SsHADV-1) [81]. This was plant 

geminivirus-associated mycovirus. S. sclerotiorum 

debilitation-associated RNA virus (SsDRV) and S. 
sclerotiorum RNA virus L (SsRV-L) have RNA 

(genome) that encodes for RNA replication enzyme 

(relpicase). S. sclerotiorum partitivirus SsDRV is 

associated with Alphaflexiviridae in addition 

characterizes many associates of the genus 

Sclerodarnavirus. The SsRV-L is found to be 

associated with rubi-like viruses and the human 

pathogenic hepatitis E virus. A partitivirus (SsPV-S) 

along with an uncategorized non-segmented dsRNA 

virus, such as S. sclerotiorum non-segmented virus L, 

were identified as coinfection agent of a virulent 

strain. 

The protein coat of SsPV-S displays a high 

similarity with indole-3-acetic acid (IAA) and ILR2 

(leucine-resistant protein 2) of Arabidopsis thaliana 

[82]. A virus namely SsHV1 was identified, which 

was found to have a close association with both 

CHV3 as well as CHV4 in the Hypoviridae family 

[83]. Recently isolated, identified and characterized a 

new hypovirus namely SsHV2 was found to share a 

high degree of genome character with CHV1 and 

CHV2. At present, hypoviruses are being identified in 

Valsa ceratosperma and Fusarium graminearum 
[84]. Many S. sclerotiorum mycoviruses are yet to be 

characterized [85]. Categorized hypo virulent strain 
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XG36-1, that displays an infectious character. But 

neither DNA nor RNA extricates was obtained 

effectively. Two mycoviruses were isolated, and 

characterized,  from a hypovirulent strain (strain KL-

1) belonging to S. sclerotiorum [80]. The KL-1 was 

isolated from sclerotium on an infected lettuce farm 

in Lexington, KY, USA. This mycelial strain 

contained two dsRNA viral genome segments, 

dsRNA1 and dsRNA2, which were named S. 
sclerotiorum mitovirus-1 (SsMV1/KL-1) and S. 

sclerotiorum mitovirus-2 (SsM2/KL-1) [80] S. 
sclerotiorum deltaflexivirus 2 (SsDFV2) is the first 

ever reported (+)ssRNA mycovirus that can control 

the incompatibility system of vegetation to diffuse 

between the host population [85]. 

Mycoviruses of Fusarium 

Fusarium is a significantly widely distributed plant 

pathogenic genus [86]. Some species not only reduce 

yield production and value of cereals but produces 

toxins in crops which can disturb the health of animal 

and human. Now, mycoviruses have been reported in 

Fusarium graminearum, F. solani, F. oxysporum, F. 
poae, F. virguliforme and F. boothii  [80, 83, 87-90]. 

Fusarium viruses belong to Totiviridae, Partitiviridae 
and Chrysoviridae [91]. However, many mycoviruses 

were recognized to infect the Fusarium species, but 

the F. graminearum -v irus1 -DK2 1(FgV1) ,  

especially, confers hypovirulence to the host [84]. A 

new mycovirus recently isolated from strain HN10 of 

F. graminearum was reported [84]. This mycovirus, 

named (FgHV1), was almost associated with CHV1 

and CHV2. It has a slight influence on the conidial 

synthesis and the growth rate of mycelia. It imparts 

no substantial influence on the virulence and 

production of mycotoxins. 

Diversity of mycoviruses in Fusarium 

During the past few years, the data of the miscellany 

of identified mycoviruses has rapidly amplified and 

this is because of the development and extensive use 

of next-generation sequencing techniques (NGS). 

Currently, full genome sequences are existing for 

twenty-nine mycoviruses from six recognized or 

tentatively nominated families (Megabirnaviridae, 
Fusagraviridae, Partitiviridae, Alternaviridae, 

Crysoviridae, Totiviridae) and one deallocated of 

group dsRNA, one deallocated (+)ssRNA virus 

belonging to Mymonaviridae family, and eleven 

(+)ssRNA viruses belonging to five recognized or 

temporarily nominated families (Table 1). 

Viruses of Phycomycetes 

Several phycomycetes species have been shown to 

transmit viruses [116]. Researchers experimented by 

infecting specie of Pythium with TMV. For this, they 

  
Table 1: Typical viruses identified that infect Rhizoctonia solani. 

Genome Mycovirus Family Host (strain) Reference 

(+)ssRNA barnavirus 1 Barnaviridae DV-8 [34] 

(+)ssRNA beny-like virus 1 BR2 Benyviridae Ag-2.2 L-P BR2 [35] 

(+)ssRNA beny-like virus 1 42304-9a Benyviridae 42304-9a [34] 

(+)ssRNA ourmia-like virus 1 Botourmiaviridae RsAG2 [34, 35] 

(+)ssRNA Cucumber mosaic virus Bromoviridae Ag-3 [36] 

(+)ssRNA flexivirus 1 Deltaflexiviridae DC17, AG2-2 IV [37] 

(+)ssRNA endornavirus RS002 Endornaviridae Ag-3-PT RS002 [35] 

(+)ssRNA endornavirus 2 Illinois1 Endornaviridae Illinois1 [35] 

(+)ssRNA hypovirus 1 Hypoviridae AG-2.2 L-P BR20 [35] 

dsRNA megabirnavirus 1 Megabirnaviridae Ag2-2 IV DC17 [35] 

dsRNA virus 717 Partitiviridae Ag-2 Rhs 717 [32] 

dsRNA partitivirus 2 GD-11 Partitiviridae IA GD-11, Ag-1 [38] 

dsRNA dsRNA virus 2 A Partitiviridae Ag-2.2 LP A [35] 

(+)ssRNA positive-stranded RNA virus 1 Tymoviridae Illinois1 [34] 

dsRNA bipartite-like virus 1 Bipartitiviridae Ag-2.2 LP BR1 [35] 

(−)ssRNA Negative stranded RNA virus 1 Betamycoserpento viridae Dk13-1 [32, 34] 

(−)ssRNA Negative stranded RNA virus 2 Betamycoserpento viridae 248-36 [35, 39] 

(+)ssRNA fusarivirus 1 BR18 Fusariviridae Ag-2.2 LP BR18 [35, 37] 

(+)ssRNA alphavirus-like 1 BR15 Mycoalphaviridae Ag-2.2 LP BR15 [35] 

(−)ssRNA bunya/phlebo-like virus 1 Mycophleboviridae Ag-2.2 LP BR3 [35] 

dsRNA RNA virus HN008 Unclassified HN008 [40] 

RNA putative virus 1 BR4 

(RsV1/BR4) 

Unclassified Ag-2.2 LP BR4 [41] 

dsRNA M1 dsRNA Unclassified Ag-3 Rhs 1A [42, 43] 

dsRNA M2 dsRNA Unclassified Ag-3 Rhs 1A [42, 43] 



 
Science Letters 2023; 11(1):35-49 

29 
 

mixed the fungal species in the virus-containing 

medium. The viral agent could be recovered from 

fungi and medium. Later, they shake it in the virus-

free medium and the virus recovered from both the 

medium and fungi. But it was not confirmed that 

either the virus replicated in fungi or it was just 

detained in a medium inside the mycelium structure. 

A different virus-like particle has been reported from 

the specie of Aphelidium [117]. A total of 55 diverse 

mycoviruses have been recognized in 56 fungal 

species in 44 fungal genera (Table 2). 

Viruses of Umbelopsis 

In comparison to other fungal families like 

Ascomycota and Basidiomycota, the existence of 

viral infections in Mucoromycota has received less 

attention. Mycoviruses are being discovered from the 

early-diverging fungus genomes increasingly and 

more frequently nowadays. Using next-generation 

genotyping, researchers have identified the genomes 

of 11 unique dsRNA viruses in seven distinct strains 

of Umbelopsis. The viruses were characterized as 

Umbelopsis gibberispora viruses 1 and 2, U. 
ramanniana viruses 5- 9, as well as U. dimorpha 

viruses 1a, 1b, and 2. (UdV2). Two open reading 

frames (ORFs), putatively encoding the coat protein 

and the RNA-dependent RNA polymerase (RdRp), 

respectively, are present in all the newly discovered 

viruses. Eight viruses (UgV1, UdV1a, UdV1b, UrV7, 

UrV8b, UrV8a, UgV2, and UdV2) are recognized as 

fitting to the genus Totivirus based on the 

phylogenetic deductions from the RdRp transcripts, 

while UrV5, UrV6a, and UrV6b are put into a yet 

unconfirmed but well characterized Totiviridae-

related category. The unusual +1 (or 2) ribosomal 

frameshift that occurs in UgV1, UgV2, UdV1b, 

UdV1a, UdV2, UrV8b, and UrV5 is anticipated to 

translate ORF2 as a fusion protein and is not typical 

of the majority of Totivirus genus members [141]. 

Viruses of Exobasidium 

Exobasidium gracile, a member of the 

basidiomycetous genera Exobasidium, is a plant 

disease that can cause C. oleifera leaflets to swell and  

 

Table 2: Mycoviruses infecting Fusarium.  

Genome Mycovirus Host Family* Reference 

dsRNA FgV2 F. graminearum 98-8-60 strain Chrysoviridae [92, 93] 

 FgV_ch9 F. graminearum China 9 strain Chrysoviridae [94] 

 FpgMBV1 F. pseudograminearum FC136-2A strain Megabirnaviridae [95] 

 FodV1 F. oxysporum f.sp. dianthi 116 strain Chrysoviridae  [96] 

 FsV1 F. solani f. sp. robiniae SUF704 strain Partitiviridae  [97] 

 FpV1 F. poae A-11 strain Partitiviridae  [98] 

 FsPV2 F. solani f.sp. pisi Partitiviridae  [99] 

 FgAV1 F. graminearum AH11 strain Alternaviridae  [100] 

 FaW1 F. asiaticum F16176 strain Totiviridae  [101] 

 FiAV1 F. incarnatum LY003-07 strain Alternaviridae  [102] 

 FgAV1 F. graminearum AH11 strain Alternaviridae  [103] 

 FpV-2 F. poae SX-63 strain Fusagraviridae  [104] 

 FpV-3 F. poae SX-63 strain Fusagraviridae  [104] 

 FgV-3 F. graminearum DK3 strain Fusagraviridae  [84] 

 FgV-4 F. graminearum DK3 strain Unassigned  [84] 

 FgV-5 F. graminearum HN1 strain Unassigned  [105] 

 FvV1 F. virguliforme Fusagraviridae  [106] 

 FvV2 F. virguliforme Fusagraviridae  [106] 

(+)ssRNA FbLFV1 F. boothii Ep-BL13 strain Unassigned  [107] 

 FgMTV1 F. graminearum SX-64 strain Tymoviridae  [108] 

 FgV1 F. graminearum strain DK21 Fusariviridae [109] 

 FgMV1 F. globosum (MAFF No. 237511) Narnaviridae  [100] 

 FbMV1 F. boothii strain Ep-BL13 Narnaviridae  [107] 

 FcoMV1 F. coeruleum (MAFF No. 235976) Narnaviridae  [100] 

 FcMV1 F. circinatum FcCa070 strain Narnaviridae  [110] 

 FgHV1 F. graminearum HN10 strain Hypoviridae  [111] 

 FgHV2 F. graminearum JS16 strain Hypoviridae  [112] 

 FIHV1 F. langsethiae AH32 strain Hypoviridae  [113] 

 FgDFV1 F. graminearum BJ59 strain Deltaflexiviridae  [114] 

(-)ssRNA FgNS-RV-1 F. graminearum HN1 strain Mymonaviridae  [115] 

* Family names are eight recognized or tentatively assigned 
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become thicker [142]. Three mycoviruses co-

infecting the plant disease E. gracile strain Z-1 were 

identified in a recent investigation based on 

genealogical and molecular analysis. E. gracile 

Zybavirus 1, E. gracile Totivirus 1 and E. gracile 

Totivirus 2 are the names of these viruses [143]. 

Taxonomy and Evolution of 

Mycoviruses 

The same classification was developed for 

mycoviruses by ICTV as the other viruses are 

classified. Their grouping produced seven groups 

having linear dsRNA. These are Chrysoviridae, 

Quadriviridae, Endornaviridae, Partitiviridae, 

Megabirnaviridae, Retroviridae and Tortiviridae. 

These are also categorized into 5 families with the 

linear genome (ss RNA); Hypoviridae, Barnaviridae, 

Alphaflexiviridae, Narnaviridae and 
Gammaflexiviridae. Some uncategorized linear 

negative-sense single-stranded RNA and spherical 

DNA viruses are also found [7]. Several mycoviruses 

synthesize dsRNA or dsRNA-related duplicating 

intermediates inside their host fungus. Such 

mycoviruses have been distinguished when purified 

from dsRNA  [1]. This purified dsRNA produces 

huge mycovirus diversity. Many fungal isolates that 

possess dsRNA exhibit multiple patterns of dsRNA 

that may denote viral genomes in segmented nature. 

These dsRNA correspondingly, exhibit assorted 

contagions of over two defective RNAs or viruses [1, 

107]. While investigating evolution, researchers have 

made a deduction that viruses in identical 

taxonomical families might contaminate several host 

species, such as animals, plants, protozoa and fungi. 

The current review suggested this by an example that 

viruses of the family Partitiviridae which contain 

dsRNA can infect plants or fungi [144]. Other fungal 

infecting viruses such as FgV1, CHV1-4 and Botrytis 

Virus X have a phylogenetical association with other 

plant viruses. It was found during their genome 

examination that their genome structure and 

expression approach is analogous to potex-like 

viruses [145]. Other viruses show a resemblance to 

human pathogenic Rubi like viruses and hepatitis E 

virus, like the virus of Sclerotinia sclerotiorum [8].  

Two major hypotheses have been projected for the 

mycoviruses’ origin [1]. The first hypothesis is called 

the "Ancient coevolution hypothesis". According to 

this hypothesis, the genesis of the mycoviruses is still 

a secret to unveil and it just echoes enduring 
coevolution. While another contrasting suggestion is 

called the "Plant virus hypothesis", which says 

mycoviruses instigated from viruses of plants, i.e., a 

plant virus wafted from plant to fungi inside the 

identical plant host and it was the original 

mycovirus [144]. 

Viral Families 

Totiviridae 

Viruses that cause infection by infective fungi are 

positioned in two genera of the family Totiviridae, 
Victorivirus and Totivirus. Viruses belonging to 

Victorivirus infect filamentous fungi, whereas those 

of the Totiviridae genus infect smut fungi [145]. 

Chrysoviridae 

The Chrysoviridae family includes viruses having 

isometric symmetry of 34-39 nm with genomes that 

are dsRNA. This family includes a sole genus namely 

Chrysovirus with Penicillium chrysogenum virus 

(PcV). The only ICTV-documented Chrysovirus that 

attacks a plant pathogenic fungal species is 

Helminthosporium victoriae 145S virus (Hv145V). 

Virions of these family members contain four 

monocistronic dsRNA segments. The largest 

segment, dsRNA-1, encodes for RNA-dependent 

RNA polymerase while dsRNA-2 encodes to make 

capsid proteins (CP). The main function of dsRNA-3 

and dsRNA-4 is not clear, but it is suggested that they 

may be virion related and may be a factor in RNA 

transcription. Phylogenetic analysis shows that 

chrysoviruses are more related to totivirus than to 

partitivirus [146]. 

Partitiviridae 

This family encompasses viral agents with isometric 

virions ranging 34-42 nm in thickness having a 

genome involving two segments of dsRNA (1.4-2.3) 

kbp. 3 genera of Partitiviridae family have been 

discussed. Genus Alphachryptovirus and 

Betachryptovirus consist of viruses that infect fungal 

species. Both plant and fungal partitive uses display 

various mutual features, such as having similarities in 

virions particles, symptoms, infections, and genomic 

organization. The phylogenetic analysis suggests the 

likelihood of horizontal transfer between plants and 

fungi [147].  

Positive sense RNA viruses 

Several mycoviruses having ssRNA genomes that do 

not express any capsid protein, and are present in 
dsRNA replication form in their hosts, are 

recognized. Such viruses analogously reproduce by 
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replication their genome as positive-stranded RNA 

viruses do. Their lineage, of genes for helicase, is 

within the lineage of RNA which is positive-stranded. 

They include members of the family Narnaviridae. 

Phylogenetic investigations of RdRp family illustrate 

far associations between Narnavirus and 

bacteriophages fitting to the family Leviviridae. 

Ophiostoma mitovirus infects phytopathogenic fungi 

and is related to hypovirulence (the ability to reduce 

infection-causing properties) [148]. 

Family Hypoviridae and Endornaviridae 

The families Endornaviridae and Hypoviridae are 

deficient in infectious virions [149]. The linear RNA 

genome of Hypoviridae is 9-13 kbp in size. 

Helicobaridium momp endornavirus 1 and 

Phytophthora endornavirus 1 are nonphyto infecting 

viral agents in Endornavirus genus (family 

Endornaviridae) of viruses infecting plants. 

Endornaviruses were thought to have progressed 

from α-like virus which had vanished its gene 

responsible for capsid formation [147]. 

Unassigned/recently classified positive-strand 

RNA viruses 

Many positive-strand RNA viruses are unassigned at 

present. Diaporhte RNA virus (DRV), Botrytis virus 

X (BVX), Sclerotinia sclerotiorum debiliatation 

(SsRV) and Botrytis virus F (BVF) are some of these. 

Due to phylogenetic analysis of sinuous filamentous 

units and protein for coat formation, BVF goes to a 

new family, Flexiviridae. Flexiviridae was recently 

divided into three families under the order 

Tymovirales; Aplhaflexiviridae, Betaflexiviridae, 

Gammaflexiviridae and Deltaflexiviridae. BVX was 

recently placed in the new genus Botrexvirus within 

the recently created family Alphaflexiviridae. The 

recently created genus sclerodarnavirus 

accommodates SsDRV placed in the family 

Alphaflexiviridae. DRV is an unassigned mycovirus 

related to the hypovirulence of its host fungi, 

Diaporthre spp. This shows homology to non- 

structural carmovirus particles of positive-strand 

RNA viruses in the Tombusviridae family. Sequences  

  

Table 3 Mycoviruses infecting different fungi. 

Fungi Reported description References 

Viruses infecting Ascomycetes   

Diplocarpon rosae Isometric (34-32 nm) [118] 

Neurospora crassa Isometric (60 nm) [119] 

Ophiobolus graminis Isometric (29 nm) [61, 120, 121] 

Peziza ostracoderma Rods (17 x 350 nm) [115] 

Saccharomyces carlsbergensis Phage like [122] 

Viruses infecting Phycomycetes 

Aphelidium sp. Iridescent type (f) [123] 

Plasmodiophora brassicae - [14] 

Viruses infecting imperfect fungi 

Alternaria tenuis Isometric (30-40 nm) [61] 

Aspergillus flavus Isometric (30nm) [124] 

A. foetidus S (IMI-41871) Isometric (40-42 nm) [125] 

A. foetidus F (IMI-41871) Isometric (30-40 nm) [125] 

A. glaucus Isometric (30-40 nm) [61] 

A. niger (IMI-146891) Isometric (25 nm) [126] 

Helminthosporium maydis Isometric (40 nm) [127] 

Mycogone perniciosa Isometric (40 nm) [128] 

M. perniciosa Rods (18 x 120 nm) [128] 

Penicillium brevicompactum Isometric (40 nm) [129] 

P. chrysogenum (ATCC-9480) Isometric (35 nm) [130] 

P. chrysogenum (ATCC-9480) Isometric (40 nm) [131] 

P. chrysogenum (NRRL-1951) Isometric (35 nm) [132] 

P. cyaneo-fulvum (CMI-58138) Isometric (32 nm) [60] 

P. citrinum Isometric (40-50 nm) [59] 

P. funiculosum Isometric (25-30 nm) [133] 

P. stoloniferum (ATCC-14586) Isometric (25-30 nm) [133, 134] 

P. stoloniferum F (ATCC-14586) Isometric (32-34 nm) [135] 

P. stoloniferum F (ATCC-14586) Isometric (32-34 nm) [135] 

Piricularia oryzae Isometric (32 nm) [118] 

P. oryzae Isometric 36 nm [120] 

Sclerotium cepivorum Isometric 30 nm [119, 136, 137] 
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obtained from complete cDNA copies are infection- 

causing when injected into the sporophore. Its isolates 

that were transduced show phenotypical 

characteristics like isolates infected naturally [148]. 

Role of Mycoviruses in Plant 
Pathogenic Fungi 

Depending on the C. parasitica paradigm, 

mycoviruses especially mycovirus-

induced hypovirulence have primarily been 

researched in plant infecting basidiomycetes and 

ascomycetes. They are comprised of plant (crop) 

pathogens like white mold pathogenic Sclerotinia 

sclerotiorum, the white root decay fungus Rosellinia 

necatrix, the rice detonation fungi Magnaporthe 

oryzae, the grey mold decay fungus Botrytis cinerea, 

and Alternaria species, among others. Tree pathogens 

like the Dutch elm disorder fungi Ophiostoma novo-

ulmi are also included (Table 3). A variety of 

mycoviruses, including some that produce 

hypovirulence and hold promise as possible 

biocontrol, are accommodated by S. sclerotiorum, 

which enhances our understanding and knowledge of 

the mycovirome. The very first mycovirus having a 

negative sense single-stranded RNA genome is called 

Sclerotinia sclerotiorum negative-stranded RNA 

virus 1 (SsNSRV-1) [10] and is grouped alongside 

important human infection-causing 

agents including mumps, measles, Ebola, and rabies 

within category Mononegavirales. Mycovirus 

invasion does not always result in hypovirulence, and 

neither does every mycovirus reduce the 

pathogenicity of its fungal hosts (Fig. 1). 

Mycoviruses, particularly SsHADV 1 invading S. 
sclerotiorum in Brassica napus [150] and 

Pestalotiopsis theae chrysovirus 1 infecting P. theae 
[151], have lately been proven to transform a harmful 

fungus into a non-pathogenic endophytic fungus that 

shields inhabited vegetation from other infections. A 

partiti virus that infects the black rot disease fungus 

Nectria radicicola is an early version of 

hypervirulence in plant pathogenic fungi [152]. 

Hypervirulence is a condition in which a mycovirus 

increases the pathogenicity of its fungal target, a 

condition acknowledged as hyper virulence [153]. In 

plant pathogenic fungi, hypervirulence would be 

regarded as a negative consequence of mycovirus 

invasion; nevertheless, this might be complemented 

by other advantageous compensatory features. For 

instance, Leptosphaeria biglobosa quadrivirus 1 

(LbQV-1) [154] tends to enhance the radial 

proliferation, plant biomass, and pathogenicity of L. 
biglobosa, that also infects B. napus as well as, along 

with the highly associated Leptosphaeria maculans, 

causes the condition called as phoma stem canker 

mostly in UK as well as canola blackleg mostly in 

USA. Simultaneously to this, B. napus's exposure to 

L. biglobosa contaminated with LbQV-1 causes 

disease resistance, which shields the crops against the 

more vigorous L. maculans [155]. The fungus causing 

smut, which is dimorphic basidiomycete, Ustilago 

maydis alternates between filamentous 

development and yeast growth [156], and possesses a 

lethal yeast mechanism that is comparable to S. 

cerevisiae. Crops become resilient to U. maydis and 

kindred infections as a consequence of the infectious 

toxin's transgenic manifestation in planta [157].    

 

 

Fig. 1 Phenotypes of mycovirus in phytopathogenic fungus. Filamentous fungus that affects plants, shrubs, and agricultural 

crops either directly or by producing poisons have been shown to have mycovirus-induced phenotypes. With each trait, example 

of mycoviruses and associated host fungus are provided. 
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Fig. 2 Horizontal transmission of mycoviruses from infected hyphae to normal ones [160]. 

 

 

Quite far, it has been demonstrated that mycovirus 

infection alters the manufacturing of fungal toxins, 

suppressing the development of cancer-causing 

aflatoxins in Aspergillus flavus, the fungus that 

causes ear decompose, or, on the other hand, evoking 

the synthesis of tenuazonic acid, a supplementary 

chemical compound and mycotoxin, in M. oryzae 

[158] and in Alternaria alternata, AK-toxin [152]. 

Lastly, it has recently been suggested that mycovirus 

contamination and azole resistance are related; 

however, this connection has solitary been 

demonstrated so far in the Penicillium digitatum, 

a green mold fungus (Fig. 2) [10, 159]. 

Future Challenges and Conclusions  

Early research on fungal infecting viruses made them 

objectionable since they attacked many marketable 

mushroom species. But after that, they were accepted 

as being beneficial as they can control fungal 

pathogenic activity. The application of mycoviruses 

as operative biocontrol mediators further necessitates 

the careful contemplation of some aspects, including 

both virus and host properties. Recently, Sclerotinia 

sclerotiorum hypo virulence related DNA virus 1 was 

utilized to control the rot disease of rapeseed stem, as 

an effect, this lowered the disease symptoms [8]. 

Mycovirology is currently in its early stage compared 

to other areas of microbiology specially discussing 

virology; further advancement could contribute to 
long-term, achieving sustainability to a number of 

important issues in the environment, such as 

antimicrobial resistance, biological control of 

contagious diseases or agricultural plants, and forest 

management. There is a lot of unrealized promise in 

applied mycovirus science, as demonstrated by the 

most recent developments in our knowledge of 

linkages between mycovirus and fungus hosts. There 

is the possibility to employ mycoviruses more 

effectively and manage them to achieve their full 

potential if researchers have a deeper grasp of the 

molecular processes behind mycovirus-mediated 

phenotypes. In the future, there will be several 

challenges regarding the use of hypo virulent strains 

for the administration of plant infective fungi. 

Inhibition of mycoviruses’ transmission, from hypo 

virulent strains to target strains due to vegetative 

incompatibility, will be the greater challenge.  

Potentially unfit hypo virulent strains may cause 

infections. Another important issue is the adaptation 

of mycoviruses to live with fungal hosts. 

Consequently, several mycoviruses do not disturb 

their host species. Some mycoviruses do not tempt 

infectious indications in their hosts, although they 

harm their host. Some mycoviruses enhance the 

virulence of plant pathogenic fungi by altering their 

phenotype.  

The identification of targeted species for various 

fungal infections, or the acquisition of pertinent data 

for the treatment of these fungi-induced plant 

ailments, are indicated to be made possible by an 
awareness of mycoviral variety and approaches of 

new virus detection. In the upcoming years, research 
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on the complex interactions between viruses, fungi, 

plants, and environments is anticipated to rise, as well 

as the discovery of new mycoviruses.  So, it is 

recommended that plenty of widely accessible data on 

viral sequencing besides bioinformatics tools may be 

employed as the first screening procedures for the 

construction of biological control measures in 

farming practices that have not yet been the research 

focus. It is anticipated that two approaches will be 

valuable to advance: in the first, the known 

hypovirulence implications of mycoviruses on their 

fungal hosts can also be implemented to related 

phytopathogens, aiming to reduce their growth and 

infectivity; in the second, hypervirulence associations 

can be tried in fungi known to be helpful to plants as 

stress-resistance stimulators, biocontrol and growth 

regulators. Moreover, molecular characterization or 

docking can be performed to find their molecular 

nature [161]. Virtual screening can also be performed 

to know these entities better [162]. Mycoviruses have 

a wide range of conceivable applications and 

substitutes as prospective biocontrol mediators in 

numerous fungi-plant systems, signifying a potential 

research field in the coming days. 
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