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Abstract 

This work aimed to study the modeling of the organic pollution of the waters 

of the Déganobo Lake system by three models: Multiple Linear Regression 

model (MLR model), Mutilayer Perceptron model (MLP model) and Multiple 

Linear Regression/ Mutilayer Perceptron hybrid model (MLR/MLP hybrid 

model). In its implementation, the chemical oxygen demand (COD) of these 

waters, obtained from August 2021 to July 2022, was used. Two approaches 

were done in the case of the modeling of their COD by the MLP model and 

the MLR/MLP hybrid model: static modeling and dynamic modeling. The 

results have highlighted the low predictions of the COD of these waters by the 

MLR model (36.2 %) and the MLP models (6-8-1 for the static modeling and 

7-3-1 for the dynamic modeling, both predicting less than 35% of the 

experimental values with high error (RMSE upper than 1.30 and relative error 

upper than 0.750). However, the MLR/MLP hybrid models (MLR/6-3-1 for 

the static modeling and MLR/7-3-1 for the dynamic modeling) both well 

predicted the COD of these waters, around 99% with very low errors (RMSE 

less than 0.0001 and relative error less than 0.006 in both cases). So, the 

MLR/MLP hybrid model was the most efficient to predict the COD of these 

waters. The accuracy of this hybrid model for ecological modeling was again 

provided during this study. 
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Introduction 

Organic matter has a fundamental role in the aquatic 

environment for its importance in biogeochemical 

reactions. However, its strong presence in surface 

waters contributes to ecological scourges and the 

consequences are serious health risks [1, 2]. In 

general, excessive organic matter in aquatic 

ecosystems generates an important quantity of 

nitrogenous and phosphorus nutrients, the main 

cause of eutrophication [3]. Excessive organic 

matter in these entities could be also an additional 

source of their metal pollution under some 

biogeochemical and physical conditions [1]. The 

presence of non-biodegradable organic matter in the 

surface waters, such as hydrocarbons and pesticides, 

could also lead to serious ecological and health risks 

[4, 5]. The knowledge of organic matter in waters, 

particularly in the surface waters, has always been 

important for the assessment of their quality. The 

assessment of the organic pollution of waters is 

conducted through several parameters of which the 

most used are the chemical oxygen demand (COD) 

and biochemical oxygen demand (BOD). COD and 

BOD represent approximate measurements of 

required oxygen quantities for chemical and 

biochemical degradation of organic matter, 

respectively. By their experimental implementation, 

BOD underestimates organic pollution, while COD 

extrapolates it [6, 7]. Therefore, the use of COD for 

the modeling of organic pollution would be more 

advantageous; in as much that is the representation 

of facts and the theoretical approach from statistics 

based on their spatial and temporal evolutions [8, 9]. 

One of the commonly used short-term and long-term 

methods for ecological monitoring is modeling. 

Artificial neuron networks (ANNs), the black 

box models, are becoming more and more 

commonly used in the development of prediction 

models for complex systems as the theory behind 

them develops and the processing power of 

computers increases [10, 11]. This is the particular 

case of the modeling of the COD of the surface 

waters [12, 13]. The multilayer perceptron (MLP), 

one of the multiple variants of ANNs, is suitable for 

this purpose as highlighted by many recent studies, 

such as those of Ay and Kisi [14], Bachir et al. [15] 

and Selim et al. [16]. The ability of the multiple 

linear regression model (MLR model) for the 

modeling of the COD of the surface waters was also 

provided by many recent studies [16, 17]. One 
model, becoming more and more used for ecological 

modeling, is the multiple linear regression-

multilayer perceptron hybrid model (MLR-MLP 

hybrid model). This hybrid model aims to provide a 

good approach to experimental data. Any hybrid 

model based on the MLP model is used when the 

modeling of experimental data by the MLR model 

and MLP model could not provide good approaches 

to experimental values. The use of this model 

amounts first to adjusting the values of the 

dependent variable(s) according to the values of the 

relevant independent variables in their explanation 

by the MLR model; then to use the values of the 

dependent variable(s) adjusted by the MLR model as 

output and the independent variables as input 

parameters for the MLP model. Many studies have 

highlighted the accuracy of this hybrid model in 

ecological modeling. That is the particular case 

reported by Adnan et al. [18], Kamisan et al. [19], 

Lola et al. [20], Massouri et al. [21] and Yao et al. 

[22-24].  

The Déganobo lake system, located in the urban 

center of San-Pedro city, is one of the tourist 

attractions of this seaside town [25]. It has a 

remarkable biodiversity [26]. However, it is 

currently the receptacle of anthropogenic discharges 

of all kinds without treatment from its watershed. 

This fact leads to its relatively high pollution. 

Indeed, Konan and Yao [27] have highlighted the 

high organic pollution of its waters with serious 

ecological risks during all seasons. The seasonal 

mean values of their COD were higher than 220 mg 

O2/L, with the annual mean value of their COD of 

296.05 mg O2/L from August 2021 to July 2022. So, 

it is important to carry out actions and decisions for 

the protection and sustainable development of this 

lake system. The knowledge of the static and 

dynamic evolution of their organic pollution in short 

or/and long times could contribute to it. This study 

aimed to study the modeling of the COD of its 

waters by three models: MLP, MLR and hybrid 

model MLR/MLP hybrid model. 

Materials and Methods 

Presentation of the study area  

The Déganobo Lake system is geolocated at 6.63775 

W and 4.75046 N. It consists of two lakes: Lac Ouest 

with a currently open water surface area of 49.05 ha 

and Lac Est with a currently open water surface area 

of 28.87 ha [27, 28] (Fig 1). It has impressive 

hydrology, made of the San-Pédro River and the 

Digboué lagoon, linked between them by a lot of 

wetlands [26, 27, 29]. Its hydrochemistry is linked 

to the rainfall in the San-Pédro Department [27]. 
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Fig. 1 Geo-localization of the Déganobo Lake system (Map source: Traoré [25], cited by Konan and Yao [27]). 

 

This lake system is under strong anthropogenic 

pressures, because receives all kinds of discharges 

from its watershed. Thus, this situation leads to its 

relatively important pollution as revealed by AIP 

[26], Konan and Yao [27] and Ogou and Bidi [30]. 

Data collection 

The monthly values of pH, conductivity, temperature, 

redox potential and COD of these waters used in this 

study were obtained from the works of Konan and 

Yao [27] during the period from August 2021 to July 

2022. Those of the monthly rainfall in the same 

period were downloaded from the website 

“historiqueméteo.net” [31, 32]. 

Implementation of the MLR model, MLP model 

and MLR/MLP hybrid model  

The implementation of these different models was 

done as same as done by Yao et al. [23, 24]. In the 

development of these models, pH, redox potential, 

conductivity and temperature of the waters from the 

Déganobo lake system, as well as the rainfall in the 

San-Pédro Department were taken into account, 

because playing important roles in the dynamics of 

the COD of these waters from August 2021 to July 

2022 as highlighted by Konan and Yao [27]. 

Multiple linear regression model (MLR model)  

In this study, the development of the MLR model was 

done considering the monthly COD (COD) of these 

waters as the dependent variable; the monthly pH 

(pH), conductivity (Cond), temperature (T) and redox 

potential (U) of these waters, as well as the monthly 

rainfall in the San-Pédro Department, as independent 

variables. The MLR model was performed in this 

study using the IBM SPSS statistics V20 software. A 

dataset of 1048 data was used for this purpose. All 

calculations were performed in double precision. The 

model obtained in this study was validated if these 

two conditions are simultaneously observed: the 

determination coefficient of the MLR model (R2
MLR) 

obtained is greater than 0.5, i.e., the MLR model 

expresses more than 50% of the experimental values 

of the COD of these waters and the p-value is less 

than 0.05 (5%). 

Multilayer perceptron model (MLP model)  

Two approaches were considered in the 

implementation of the MLP models: the static 

modeling and the dynamic modeling of the COD of  



 

      Science Letters 2024; 12(1):1-9 

4 

 

 
 

Fig. 2 Architecture of the MLR/6-3-1 hybrid model obtained in the case of the static modeling of the chemical oxygen demand of 

the waters from the Déganobo Lake system. 

Biaser, biais; Month, time; pH, pH of these waters; U, redox potential of these waters; Sal, salinity of these waters; Cond, 

conductivity of these waters; T, temperature of these waters; Rain, monthly rainfall; CODmlr, chemical oxygen demand of lake 

waters obtained with MLR model; blue lines show positive synaptic weight and grey lines show negative synaptic weight. 

                     
  

 
 

Fig. 3 Architecture of the MLR/7-3-1 hybrid model obtained in the case of the dynamic modeling of the chemical oxygen demand 

of the waters from the Déganobo Lake system. 

Biaser, biais; Month, time; pH, monthly pH of these waters; U, monthly redox potential of these waters; Sal, monthly salinity of 

these waters; Cond, monthly conductivity of these waters; T, monthly temperature of these waters; Rain, monthly rainfall; CODmlr, 

monthly chemical oxygen demand of lake waters obtained with MLR model; blue lines shows positive synaptic weight and grey 

lines show negative synaptic weight. 

 

these waters. For the static modeling of the COD of 

these waters: the monthly COD of these waters was 

the output parameter and the monthly pH (pH), 

conductivity (Cond), temperature (T) and redox 
potential (U) of these waters, as well as the monthly 

rainfall in the San-Pédro Department, were the input 

parameters. For the dynamic modelling of the COD 

of these waters, the time (month) was added to the 

input parameters considering the case of the static 

modeling. The different MLP models were performed 
using the IBM SPSS statistics V20 software. A 

dataset of 1048 data was used for the static modeling 
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of the COD of these waters and that of 1060 data was 

for the dynamic modeling of their COD. In the 

development of the MLP models, the different 

datasets were partitioned into three: 40% for the 

learning phase, 30% for the validation phase and 30% 

for the test phase. The number of hidden layers was 

1. The transfer function used on the hidden layer 

neurons is sigmoid (Tanh) and the function used on 

the output layer neuron is the identity function (y = 

x). Before processing, the different values of the input 

and output parameters were normalized according to 

equation (1) and coded in a range between 0 and n (n 

is an entire number). 

𝑥𝑛𝑖 =
2(𝑥𝑖 − 𝑥𝑚𝑖𝑛)

(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)
− 1                                          (1) 

The weights of the network are initialized before their 

variation in the learning phase to obtain a low error. 

The Levenberg-Marquardt algorithm was used to 

speed up the learning phase. The learning rate was 

initially set to 0.4 and gradually decreased to 0.001 at 

± 0.5 steps. The network architecture was optimized 

by the trial-and-error method. The number of hidden 

layers varied from 1 to 10. For each value of the 

hidden layer, the simulations were performed 2000 

times and the best result (simultaneous highest values 

of the determination coefficients in the learning phase 

(R2
learning) and in the test phase (R2

test) of the 

corresponding network architecture was recorded. 

The best model for each case of the COD modeling 

of these waters was the model that presented the 

highest value of the determination coefficient (R2), 

which was the mean of the determination coefficient 

obtained in the learning phase (R2
learning) and that 

determined in the test phase (R2
test) equation (2): 

R2 =
Rlearning

2 + Rtest
2

2
                                              (2) 

This model is validated if these two following 

conditions are observed: R2
test is higher than 0.5, i.e., 

the model expresses more than 50% of the 

experimental values of the COD of these waters in the 

test phase, and RMSEtest (root mean square error in 

the test phase) and REtest (relative error in test phase) 

are very low, the lowest of all of the different MLP 

models established. 

Multiple linear regression-multilayer perceptron 

hybrid model (MLR/MLP hybrid model) 

Two approaches were also made with this hybrid 

model: the static modeling and the dynamic modeling 

of the COD of these waters. In the implementation of 

this model, the COD of these waters was before 

modeling by the MLR model in the same conditions 

as II-2-3. This step was followed by the static 

modeling and the dynamic modeling of the calculated 

values of the DCO of these waters (obtained by the 

equation established by the MLR model) by the MLP 

model with the same input parameters as done in the 

case of the implementation of the MLP models. The 

choice of the best MLR/MLP hybrid model in each 

case of the modeling of the COD of these waters and 

their validation conditions were the same as in the 

case of MLP models. 

Results 

Multiple linear regression model (MLR model)  

The MLR model predicts 36.2% of the experimental 

values of the COD of these waters (Table 1). 

Considering its R2
MLR less than 0.9 and its p-value 

superior to 0.05 (Table 2), this model is not accurate 

for this purpose in this study. So, there is no good 

linearity between the COD of these waters and the 

independent variables used in this case.  

Table 1 Some statistical parameters of the MLR model 

obtained in this study. 

RMLR R2
MLR R2

MLR adjusted p-value 

0.190 0.362 - 0.907 

Table 2 Coefficient and p-value of each parameter obtained 

with the MLR model. 

Parameters Coefficient p-value 

Ordinate origin 784.4773 0.112085 

pH 6.7442 0.894993 

Potential redox -0.0415 0.957740 

Salinity -44.3410 0.835169 

Conductivity 0.1078 0.803677 

Temperature -18.1034 0.246282 

Rainfall  -0.0615 0.773322 

Table 3: Statistical parameters for MLP models obtained in 

the case of the static modeling of the chemical oxygen demand 

of the waters from the Déganobo Lake system. 

MLP model R2
learning R2

test R2 RMSEtest REtest 

6-1-1 0.0013 0.016 0.0087 1.5192 1.1430 

6-2-1 0.1502 0.0093 0.0798 2.5132 0.9330 

6-3-1 0.0074 0.0106 0.0090 1.2124 1.8380 

6-4-1 0.0267 0.0192 0.0230 2.1610 1.0120 

6-5-1 0.031 0.001 0.0160 2.8609 0.8630 

6-6-1 0.0875 0.1670 0.1273 0.9644 0.9740 

6-7-1 0.1152 0.3975 0.2564 2.2338 0.8650 

6-8-1 0.3824 0.3088 0.3456 1.8942 0.7590 

6-9-1 0.0294 0.0000 0.0147 2.5558 1.0570 

6-10-1 0.3681 0.0633 0.2157 0.6595 0.7040 
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Table 4 Statistical parameters for MLP models obtained in the 

case of the dynamic modeling of the chemical oxygen demand 

of the waters from the Déganobo lake system. 

MLP model R2
learning R2

test R2 RMSEtest REtest 

7-1-1 0.0666 0.0349 0.0508 0.9648 1.0367 

7-2-1 0.0008 0.0017 0.0013 3.2334 1.0470 

7-3-1 0.3363 0.0612 0.1988 1.3038 0.8990 

7-4-1 0.0030 0.0877 0.0454 2.0030 0.9100 

7-5-1 0.0900 0.0207 0.0554 1.1100 1.3760 

7-6-1 0.0631 0.0039 0.0335 0.4806 1.0110 

7-8-1 0.5336 0.0508 0.2922 2.3994 1.0620 

7-8-1 0.0000 0.0190 0.0095 0.8803 1.3610 

7-9-1 0.1390 0.1559 0.1475 1.6559 0.9050 

7-10-1 0.0451 0.0004 0.0223 2.6216 1.1830 

 

 
Fig. 4 Representation of experimental values of the chemical 

oxygen demand of lake waters as a function of their predicted 

values by the MLR/6-3-1 in the test phase. 

 

 
Fig. 5 Representation of experimental values of the chemical 

oxygen demand of lake waters as a function of their predicted 

values by the MLR/7-3-1 in the test phase. 

 

Multilayer perceptron model (MLP model)  

The statistical parameters (R2
learning, R2

test, RMSEtest 

and REtest) of the MLP models obtained in this study 

for the static modeling and the dynamic modeling of 

the COD of these waters are presented in Tables 3 and 

4. The best MLP model for the static modeling of the 

COD of these waters is 6-8-1. This model expresses 

at 30.88 % the experimental values of COD in the test 

phase, less than 50%, with the relatively high 

RMSEtest and REtest. The best model for the dynamic 

modeling of their COD is 7-3-1. This model expresses 

at 6.12 % the experimental values of their COD in the 

test phase, less than 50%, again with the relatively 

high RMSEtest and REtest. So, these two models are 

not suitable for the prediction of the static and 

dynamic evolutions of the COD of the waters of this 

lake system in this study, according to the conditions 

defined. 

Multiple linear regression-multilayer perceptron 

hybrid model (MLR/MLP hybrid model) 

The best MLR/MLP hybrid models for the static 

modeling and the dynamic modeling of the COD of 

these waters are respectively MLR/6-3-1 and MLR/7-

3-1. The MLR/6-3-1 expresses 99.50% of the 

experimental values of the COD of these waters 

during the test phase, while the MLR/7-3-1 does it at 

99.85 %. These two hybrid models have relatively 

very low RMCEtest and REtest, the lowest of all of the 

different hybrid models (Table 5 and 6). So, the two 

models, validated according to the conditions 

defined, are more accurate for the prediction of the 

COD of these waters. The architectures of these two 

models are given in the Fig. 2 and 3, respectively. The 

representations of the experimental values of the 

COD of these waters in function to those predicted by 

these models are presented in Fig. 4 and 5, 

respectively. 

Discussion 

In this study, the poor predictions of the COD of the 

waters of this lake system by the MLR model and 

MLP model according to their salinity, redox 

potential, pH, conductivity, as well as the rainfall in 

its watershed, would highlight the complexity of the 

biogeochemical reactions within this lake system. 

Indeed, these physical, chemical and hydrological 

parameters play important roles in the fate of organic 

matter in surface waters and, consequently, in the 

dynamic of their organic pollution [33-36]. This 

seems to be particularly shown for the waters of this 

aquatic ecosystem during the long dry season, where 
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Konan and Yao [27] noted significant correlations 

between their COD and their pH, salinity and rainfall 

in its watershed with the Principal Components 

Analysis (PCA). The strong anthropogenic pressures 

on the watershed of this aquatic ecosystem, leading to 

its serious ecological degradation [26, 27, 30], would 

therefore have qualified the relevance of these 

parameters on the dynamic of the COD of its waters 

over the entire study period of Konan and Yao [27]. 

This fact is common in natural waters, especially 

polluted ones, where the direct interactions between 

the different forms of pollution with all the 

biogeochemical and physical parameters playing 

important roles in them are difficult to highlight in 

most cases [37, 38]. 

  
Table 5 Statistical parameters for MLR/MLP hybrid models 

obtained in the case of the static modeling of the chemical 

oxygen demand of the waters from the Déganobo lake system. 

Hybrid model R2
learning R2

test R2 RMSEtest REtest 

6-1-1 0.9885 0.9827 0.9856 0.1225 0.005 

6-2-1 0.9748 0.9649 0.9699 0.2588 0.038 

6-3-1 0.9970 0.9930 0.9950 0.0949 0.006 

6-4-1 0.9946 0.9943 0.9945 0.1581 0.009 

6-5-1 0.9498 0.9121 0.9310 0.4733 0.123 

6-6-1 0.9859 0.9440 0.9650 0.4025 0.043 

6-7-1 0.9925 0.9696 0.9811 0.4025 0.042 

6-8-1 0.9850 0.9735 0.9793 0.4231 0.060 

6-9-1 0.9933 0.9635 0.9784 0.1342 0.008 

6-10-1 0.9842 0.9807 0.9825 0.2898 0.048 

 
Table 6 Statistical parameters for MLR/MLP hybrid models 

obtained in the case of the dynamic modeling of the chemical 

oxygen demand of the waters from the Déganobo lake system. 

Hybrid model R2
learning R2

test R2 RMSEtest REtest 

7-1-1 0.9936 0.9933 0.9935 0.1304 0.007 

7-2-1 0.9881 0.9907 0.9894 0.1049 0.007 

7-3-1 0.9979 0.9985 0.9982 0.1000 0.002 

7-4-1 0.9989 0.9921 0.9955 0.2214 0.013 

7-5-1 0.9831 0.9893 0.9862 0.1949 0.016 

7-6-1 0.9755 0.9720 0.9738 0.3131 0.027 

7-7-1 0.9762 0.9603 0.9683 0.3661 0.044 

7-8-1 0.9666 0.9436 0.9551 0.1789 0.082 

7-9-1 0.9769 0.9687 0.9728 0.4324 0.059 

7-10-1 0.9918 0.9848 0.9883 0.3507 0.045 

 

The acuity of the MLR/MLP hybrid model in 

predicting ecological phenomena [18-24] is once 

again highlighted in this study, where this model 

predicts more than 99% of the COD of the waters of 

this lake system, and that with very low errors. This 

fact could be explained by the partial linearity 

previously introduced by the MLR model between the 

COD of these waters and the independent variables 

used for this purpose. This has the effect of further 

revealing the relevance of these independent 

variables used as input parameters for the MLP model 

on the one hand, and the better prediction of the 

independent variable through that predicted by the 

MLR model, used as parameter output, on the other. 

Indeed, more there are high correlations between the 

input parameters and the output parameter(s), the 

better the results obtained with the MLP model [22]. 

That could explain the high accuracy of the 

MLR/MLP hybrid model for the prediction of the 

COD of these waters relatively of the MLR model and 

the MLP model in this study. This was also noticed 

by Yao et al. [24] in the case of the modeling of the 

COD of the waters from the Tiagba Lagoon Bay. The 

ability of the “MLR/MLP” hybrid model more than 

the MLR model and the MLP model was reported by 

many studies in other cases, such as those of Kamisan 

et al. [19] in the modeling of the load forecasting of 

Malaysian City, Lola et al. [20] in the modeling of the 

chlorophyll-a of the waters from the Offshore Kuala 

Terengganu, Manssouri et al. [21] in the modeling of 

the water quality indicators of groundwater and, Yao 

et al. [22] in the modeling of the eutrophication of the 

waters from the Tiagba lagoon bay. On the whole, the 

hybrid models based on the MLP model have very 

good accuracy, as reported by many recent studies, 

including those of Li et al. [39], He et al. [40] and Zhu 

et al. [41].  

Conclusion  

The use of different models in this context has once 

again highlighted the acuity of the MLR-MLP hybrid 

model in translating environmental phenomena, 

especially those related to the pollution of surface 

waters. The MLR-MLP hybrid models obtained in 

this study could serve as a basis for any decision 

concerning the rehabilitation and protection of this 

aquatic ecosystem. Other studies concerning the 

modeling of chemical pollution of the waters of this 

lake system by this hybrid model, especially those 

related to their pollution pesticides and aromatic 

polycyclic aromatic, should be explored for the same 

purposes.  
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