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Abstract  

The heat transfer phenomena for single- and double-layer inclined 

absorbers, which absorb synchrotron radiation has been studied using 

analytical and numerical methods. Photon penetration through the metal 

layers has been included and the effects of the spectral variation of the 

absorption coefficients and variable thermal conductivities have been 

examined. Different thickness ratios and inclination angles have been 

studied for double layer absorbers and it has been shown that double-layer 

inclined absorbers significantly reduce the peak temperatures. In the current 

study, thermoplasmonic characteristics of cerium nanoparticles with 

spherical, core-shell and rod shapes were investigated. In order to 

investigate these characteristics, the interaction of synchrotron radiation 

emission as a function of the beam energy and cerium nanoparticles were 

simulated using the 3D finite element method. Firstly, absorption and 

extinction cross-sections were calculated. Then, increases in temperature 

due to synchrotron radiation emission as a function of the beam energy 

absorption were calculated in cerium nanoparticles by solving the heat 

equation. The obtained results showed that cerium nanorods are a more 

appropriate option for using in optothermal human cancer cells, tissues and 

tumor treatment methods. Furthermore, the produced heat devastates tumor 

tissues adjacent to nanoparticles without any hurt to sound tissues. 

Regarding the simplicity of ligands connection to cerium nanoparticles for 

targeting cancer cells, these nanoparticles are more appropriate to use in 

optothermal human cancer cells, tissues and tumors treatment. 
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Introduction 

In the past ten years, synchrotron radiation 

generated by circulating electron or positron beams 

has been widely used as a powerful X-ray photon 

source in several fields [1–3]. Recently high energy 

electron or positron synchrotron storage ring to 

provide more brilliant and higher flux photons have 

been proposed and are being constructed [4–6]. The 

bending magnet enables electrons to circulate in the 

closed-loop of the storage ring and most of the 

photons generated should be absorbed before 

striking the wall of the vacuum chamber of the 

storage ring and the rest of those are extracted for 

experimental use [7]. Photon absorbers have been 

installed in an ultra-high vacuum storage ring to 

absorb unwanted photons [8]. Since synchrotron 

radiation generated by a high energy ring is very 

powerful, concentrated and penetrating, the 

absorber is subjected to the extremely high internal 

heat (comparable to that of an electron beam 

welding machine). Depending on the materials 

used, this energy generation may be restricted to the 

region near the surface or distributed throughout the 

absorber decaying exponentially in the direction of 

the penetration.  

The cooling of the absorber is important not 

only to prevent the melting of the material but also 

to ensure an ultra-high vacuum (~/0–9torr) in a 

storage ring. Note that photon energy deposition in 

the metal causes the desorption of gases, which 

would result in significant increases in the pressure 

[9, 10]. Inclined photon absorbers have been 

considered in order to reduce the high wall heat 

flux; the inclination of the plate to the photon 

direction increases the photo projection area, and 

correspondingly, decreases the heat flux [5, 7, 11]. 

Since copper (Cu), which has generally been used 

as an absorber material absorbs most of the photons 

very near the surface and the temperature of the 

surface becomes very high despite the high thermal 

conductivity [12]. On the other hand, beryllium 

(Be), which has been widely used to isolate a 

storage ring from the experimental line due to its 

relative transparency to X–rays, diffuses the intense 

radiation throughout the plate, even though it has a 

much lower thermal conductivity than copper [13, 

14]. To combine the merits of Be and Cu, a Be–Cu 

composite cylinder has been developed and 

successfully used [15]. The heat transfer of single 

or multilayers caused by the absorption of photons 
has been studied with applications to laser 

processing and composite materials [16]. In the 

present work, inclined single- and double-layer 

absorbers are analyzed and analytical and numerical 

solutions are obtained. The effects of the variable 

absorption coefficient of the metal, which is 

dependent on the photon spectrum and variable 

thermal conductivity are examined for different 

materials. In addition, the effects of different 

thickness ratios and different inclination angles are 

also studied for the double layer absorber. The 

present approach can also be applied to other fields; 

e.g., laser processing and heat transfer in composite 

materials. 

 

Fig. 1 Scanning electron microscope (SEM) image of 

cerium nanoparticles with 50000×. 

In the recent decade, metallic nanoparticles 

have been widely interested, due to their interesting 

optical characteristics [1–8]. Resonances of surface 

plasmon in these nanoparticles lead to an increase 

in synchrotron radiation emission as a function of 

the beam energy scattering and absorption in related 

frequency [9, 10]. Synchrotron radiation emission 

as a function of the beam energy absorption and 

induced produced heat in nanoparticles has been 

considered as a side effect in plasmonic 

applications for a long time [11–15]. Recently, 

scientists found that thermoplasmonic 

characteristics can be used for various optothermal 

applications in cancer, nanoflows and photonic [17–

22]. In optothermal human cancer cells, tissues and 

tumor treatment, the descendent laser light 

stimulates resonance of surface plasmon of metallic 

nanoparticles and as a result of this process, the 

absorbed energy of descendent light converse to 

heat in nanoparticles [23–25]. The produced heat 

devastates tumor tissue adjacent to nanoparticles 

without any hurt to sound tissues [26-29]. 

Regarding the simplicity of ligands connection to 

cerium nanoparticles (Fig. 1) for targeting cancer 

cells, these nanoparticles are more appropriate to 
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use in optothermal human cancer cells, tissues and 

tumor treatment [30–74]. In the current paper, 

thermoplasmonic characteristics of spherical, core-

shell and rod cerium nanoparticles are investigated. 

Materials and Methods 

To calculate the generated heat in cerium 

nanoparticles, COMSOL software, which works by 

Finite Element Method (FEM) was used. All 

simulations were made in 3D. Firstly, absorption 

and scattering cross-section areas were calculated 

by the optical module of the software. Then, using 

the heat module, temperature variations of 

nanoparticles and its surrounding environment were 

calculated with data from the optical module [94–

99]. In all cases, cerium nanoparticles are presented 

in water environment with dispersion coefficient of 

1.84 and are subjected to flat wave emission with 

linear polarization. The intensity of the descendent 

light was 1 mW/μm2. The dielectric constant of 

cerium is dependent on particle size [100–114]. It 

should be noted that here descendent light means 

synchrotron radiation (also known as 

magnetobremsstrahlung radiation) is the 

electromagnetic radiation emitted when charged 

particles are accelerated radially, e.g., when they 

are subject to an acceleration perpendicular to their 

velocity (a ⊥ v). It is produced, for example, in 

synchrotrons using bending magnets, undulators 

and/or wigglers. If the particle is non–relativistic, 

then the emission is called cyclotron emission. If, 

on the other hand, the particles are relativistic, 

sometimes referred to as ultrarelativistic, the 

emission is called synchrotron emission [1]. 

Synchrotron radiation may be achieved artificially 

in synchrotrons or storage rings, or naturally by fast 

electrons moving through magnetic fields. The 

radiation produced in this way has a characteristic 

polarization and the frequencies generated can 

range over the entire electromagnetic spectrum 

which is also called continuum radiation. 

Heat generation in synchrotron radiation 

emission  

When cerium nanoparticles are subjected to 

descendent light, a part of light scattered (emission 

process) and the other part absorbed (non–emission 

process). The amount of energy dissipation in non–

emitting process mainly depends on the material 

and volume of nanoparticles and it can be identified 

by the absorption cross-section. On the other hand, 

the emission process whose characteristics depends 

on volume, shape and surface characteristics of 

nanoparticles are explained by scattering cross-

section. The sum of absorption and scattering 

processes that lead to light dissipation is called 

extinction cross-section [75–85]. 

Cerium nanoparticles absorb the energy of 

descendent light and generate some heat in the 

particle. The generated heat transferred to the 

surrounding environment and leads to an increase in 

temperature of adjacent points to nanoparticles. 

Heat variations can be obtained by the heat transfer 

equation [86–93]. 

Results and Discussion 

Firstly, calculations were made for cerium 

nanospheres with a radius of 5, 10, 15, 20, 25, 30, 

35, 40, 45 and 50 nanometers. The results show that 

by the increase in nanoparticles size, extinction  

 
Fig. 2 Maximum increase in temperature for cerium 

nanospheres. It should be noted that x-axis shows cerium 

nanospheres radius (nanoparticles size) (nm), y–axis shows 

temperature of nanospheres in surface plasmon frequency 

(K) and z-axis shows wavelength (nm). 

 
Fig. 3 Variations of absorption to extinction ratio and 

scattering to an extinction ratio for cerium nanospheres with 

various radiuses. It should be noted that the x-axis shows 

cerium nanospheres radius (nanoparticles size) (nm), the y-

axis shows absorption and the z-axis shows wavelength 

(nm). 
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Fig. 4 Maximum increase in temperature for spherical 

nanoparticles with a radius of 45 nm at plasmon wavelength 

of 685 nm. 

 

Fig. 5 Maximum increase in temperature for core-shell 

cerium nanospheres with various thicknesses of the silica 

shell. It should be noted that the x-axis shows cerium 

nanospheres radius (nanoparticles size) (nm), the y-axis 

shows the temperature of nanospheres in surface plasmon 

frequency (K) and z-axis shows wavelength (nm). 

  

Fig. 6 Maximum increase in temperature for core-shell 

nanoparticles with a radius of 45 nm and a silica thickness 

of 10 nm at plasmon wavelength of 701 n). It should be 

noted that the x-axis shows cerium nanospheres radius 

(nanoparticles size) (nm), the y-axis shows the temperature 

of nanospheres in surface plasmon frequency (K) and z-axis 

shows wavelength (nm). 

cross-section area increases and maximum 

wavelength slightly shifted toward longer 

wavelengths. The maximum increase in 

temperature of nanospheres in surface plasmon 

frequency is shown in Fig. 2. The results showed 

that the generated heat was increased by the 

increase in nanoparticles size. For 100 nm 

nanoparticles (sphere with 50 nm radius), the 

maximum increase in temperature was 83 K. When 

nanoparticles size was reached to 150 nm, an 

increase in temperature was enhanced in spite of the 

increase in the extinction coefficient.  

In order to find the reason for this fact, the ratio 

of absorption to extinction for various nanospheres 

in plasmon frequency is shown in Fig. 3. The results 

showed that increasing the size of nanospheres led 

to a decrease in the ratio of light absorption to the 

total energy of descendent light so that for 150 nm 

nanosphere, scattering was larger than absorption. 

It seems that despite an increase in nanoparticles 

size led to more dissipation of descendent light, the 

dissipation was in the form of scattering and hence, 

it cannot be effective in heat generation. The results 

of heat distribution showed that temperature was 

uniformly distributed throughout the nanoparticles, 

which was due to the high thermal conductivity of 

cerium (Fig. 4). In this section, the core-shell 

structure of cerium and silica was chosen. The core 

of a nanosphere with a 45 nm radius and silica layer 

thickness of 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 

nanometers were considered. The results showed 

that an increase in silica thickness led to an increase 

in the extinction coefficient and a shift in the 

plasmon wavelength of nanoparticles, to some 

extent. 

According to Fig. 5, silica shell causes a 

considerable increase in temperature of cerium 

nanoparticles but with more increase in silica 

thickness, its effect was decreased. Heat 

distribution shows that the temperature was 

uniformly distributed throughout the metallic core 

as well as silica shell (Fig. 6). However, silica 

temperature was considerably lower than the core 

temperature due to its lower thermal conductivity. 

In fact, the silica layer prohibits the heat transfer 

from metal to the surrounding aqueous environment 

due to low thermal conductivity. Hence, the 

temperature of nanoparticles has more increase in 

temperature. Increasing the thickness of the silica 

shell leads to an increase in its thermal conductivity 

and leads to attenuation in the increase in 

nanoparticle temperature. According to Fig. 7, the 

variation of the nanorod dimension ratio led to a  
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Fig. 7 Extinction cross-section area for cerium nanorods with an effective radius of 45 nm and various dimension ratios.

 
Fig. 8 Spectral and angular distribution of dimensionless 

synchrotron radiation power per normalized photon energy. 

a considerable shift in plasmon wavelength. This 

fact allows regulating the plasmon frequency to 

place in the near IR zone. Light absorption by body 

tissues was lower in this zone of the spectrum and 

hence, nanorods are more appropriate for 

optothermal human cancer cells, tissues and tumors 

treatment methods. Also, Fig. 8 illustrates spectral 

and angular distribution of dimensionless 

synchrotron radiation power per normalized photon 

energy. Variations of temperature in cerium 

nanorods with two effective radius and various 

dimension ratios are shown in Fig. 9. By increase in 

length (a) to radius (b) of nanorod, the temperature 

was increased. 

 

 

Fig. 9 Maximum increase in temperature for nanorods with an 

effective radius of 20 nm and 45 nm and various dimension 

ratios. It should be noted that the x-axis shows the cerium 

nanospheres radius (nanoparticles size) (nm), the y-axis shows 

the temperature of nanospheres in surface Plasmon frequency 

(K) and z-axis shows wavelength (nm). 

Conclusions  

The calculations showed that in cerium 

nanoparticles, light absorption in plasmon 

frequency cause to increase in temperature of the 

surrounding environment of nanoparticles. In 

addition, it shows that adding a thin silica layer 

around the cerium nanospheres increased their 
temperature. Calculations of nanorods showed that 

due to the ability to shift surface plasmon frequency 
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toward longer wavelength as well as more increase 

in temperature, this nanostructure is more 

appropriate for medical applications such as 

optothermal human cancer cells, tissues and tumor 

treatments. 
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