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Abstract 
MicroRNAs (miRNAs) are short, non-coding RNAs that regulate post-transcriptional gene expression in animals and plants. 

Biogenesis of miRNAs is itself a highly complex process. miRNAs bind to the 3’ untranslated region (UTR), 5’ UTR or/and 
coding regions of their target mRNAs in a sequence specific manner. Targeting of mRNAs leads to the repression of protein 

synthesis by a mechanism that is yet to be fully determined. miRNA-mediated translational repression has been proposed to 

occur in distinct ways. Some reports have also shown miRNA-mediated translational activation. Details regarding the different 

modes of actions related to transcriptional and post-transcriptional regulation of miRNAs are still emerging. In this review, 

information regarding the history, biogenesis and different modes of actions of miRNAs are discussed. 
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Introduction 
History 

MicroRNAs (miRNAs) are small (21-24 nucleotide 

(nt) in length) non-coding RNAs, which are able to 

regulate gene expression at the post transcriptional 

level [1]. The first miRNA; lin-4 (22 nt long) was 

identified in a nematode; Caenorhabditisis elegans 

(C. elegans) in 1993 by the Ambros and Ruvkun 

laboratories simultaneously [2, 3]. It was found to 

negatively regulate the expression of the lin-14 

protein product by targeting complementary sites in 

the 3’ untranslated region (3’UTR) of the lin-14 

mRNA via an antisense RNA-RNA interaction [3, 4]. 

Mutation in the lin-4 ORF did not affect its function, 

suggesting that lin-4 did not encode for a protein [2]. 

This discovery remained unrealized for almost seven 

years when Reinhart et al, identified a second 

miRNA; let-7 in C. elegans [5]. let-7 was found to 

interact with the 3’UTRs of lin-41 and lin57 mRNAs 

and inhibit their translation [6, 7]. These discoveries 

unveiled a new family of RNAs which later became 

known as microRNAs (miRNAs) [8]. It has since 

been shown miRNAs are expressed in large numbers 

and present in a diverse range of different species 

(including algae, arthropods, nematodes, protozoa, 

vertebrates, plants, and viruses) [1, 9, 10]. The latest 

miRBase release (v20, June 2013), contains 24521 

miRNA loci, processed to produce 30424 mature 

miRNAs from 206 species [11] . The regulatory roles 

of miRNAs have been identif ied in various biological 

processes including determination of cell fate, 

proliferation, cell death, immune response and 

tumorigenesis [12-14]. 

 

MiRNA biogenesis 
miRNA processing in the nucleus 

The biogenesis of miRNAs is a multi-step process. It 

involves sequential processing and editing of 

transcribed miRNA genes (Figure 1). Then majority 

of miRNAs are derived from large RNA polymerase 

(pol) II transcripts, while a small proportion of  

miRNAs is derived from pol III transcripts [15, 16]. 

These primary transcripts (pri-miRNAs) are 5’end 

capped and 3’ end poly adenylated and range from 

hundreds to thousands of nucleotides in length [17, 

18]. Pri-miRNAs are transcribed from introns, exons, 

intergenic regions or in an antisense direction of 

annotated genes [17, 19, 20]. A single pri-miRNA 

transcript can either generate monocistronic miRNA 

or polycistronic clusters of miRNAs, under the 

influence of a single promoter or different promoters 

for individual miRNAs [15, 17, 21]. Approximately 

40% of human miRNAs are co-transcribed as clusters 

encoding more than one miRNA sequences in a single 

pri-miRNA transcript [22, 23]. A pri-miRNA contains 

an imperfect double-stranded (ds) stem-loop structure 

flanked by single-stranded (ss) RNA. One arm of the 

stem-loop structure includes the mature miRNA [24].  

      The stem-loop structure and the flanking region of 

the pri-miRNAs direct the pri-miRNAs to a 

multiprotein complex called the microprocessor 

complex [25-28]. The microprocessor complex 

contains an RNase III enzyme called Drosha and its 

cofactor protein DiGeorge syndrome critical region 

gene 8 (DGCR8). DGCR8 interacts with the stem-

loop structure and recruits Drosha, which then cleaves 

the pri-miRNAs precisely at the stem-loop structure 
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and liberates a 60-110 nt long RNA product called the 

precursor miRNA (pre-miRNA) with a 5’ phosphate 

and a 2 nt overhang  at the 3’ end [24, 29, 30] (Fig. 1). 

The 3’ overhang and adjacent stem of pre-miRNA is 

recognized by a heterodimer made up of Exportin 5 

and Ran-GTP cofactor (Exportin/Ran complex). The 

Pre-miRNA interacts with the Exportin/Ran complex 

and is exported from the nucleus into the cytoplasm 

[31, 32].  

 

MiRNAs processing in the cytoplasm 

In the cytoplasm, hydrolysis of Ran-GTP to Ran-GDP 

causes the release of the pre-miRNA from the 

Exportin/Ran complex [33]. The pre-miRNA is then 

taken up by the RISC loading complex (RLC) made 

up of an RNase III enzyme called Dicer, its cofactors; 

TAR RNA‑binding protein (TRBP) and protein 

activator of PKR (PACT) and the argonaute-2 (Ago-

2) protein [34-37]. TRBP and PACT are not 

absolutely required for pre-miRNA processing but 

they seem to help in stabilizing Dicer, recruiting Ago-

2 and in RLC formation [36, 38, 39]. Once in the 

RLC, the exported pre-miRNA is recognized by the 

PAZ (piwi-argonaute-zwille) and two RNase III 

domains (RNase IIIa and RNase IIIb) of Dicer [40-

43].  Once bound, Dicer cleaves the pre-miRNA at the 

base of the stem-loop, leaving an ~22 nt miRNA 

duplex with a 5’ phosphate and a 3’ OH with 2 nt 

overhang [44]. 

Once pre-miRNA has been cleaved by Dicer, the 

resultant miRNA duplex directly interacts with an 

Ago protein (also called as elF2C2) to generate the 

effector complex; RNA induced silencing complex 

(RISC) [34, 45, 46]. The Ago family proteins are the 

key effector molecules of RISC [47] and are 

composed of PAZ, MID and PIWI domains. The PAZ 

domain recognizes and interacts with the 2 nt 

overhang at 3’ end of the miRNA, whereas the MID 

domain anchors the 5’ end of the miRNA [48-50].  

The PIWI domain structure is similar to RNase H and 

is thought to play a role in cleaving of the target 

mRNA bound to the miRNA (also called slicer 

activity) [29, 51, 52]. In mammals four Ago proteins 

(Ago1-4) are associated with the miRNA but among 

those only Ago2 has been found to have an 

enzymatically competent PIWI domain with slicer 

activity to cleave the target mRNA strand that are 

perfectly complementary to the mature miRNA [53, 

54]. 

      After loading onto Ago proteins the miRNA 

duplex is unwound by helicases. One strand of the 

duplex remains in Ago and acts as a mature miRNA 

(the guide strand or miRNA), whereas the other strand 

(the passenger stand or miRNA*) is released for 

degradation or to be incorporate into another RISC as 

another mature miRNA [29, 45, 55, 56]. Relative 

thermodynamic stability of the two strands in the 

duplex, determines which strand is to be selected as 

the guide strand [57]. The strand with the less stable 

base pairing at the 5’ end is incorporated into RISC 

and becomes the mature miRNA.  If both strands of 

the duplex are used as mature miRNAs with similar  

frequency then 5p or 3p is added at the end of their 

names to denote which arm of the duplex, the mature 

sequence comes from [58]. Once the mature miRNA 

has become associated into RISC, the miRNA is used 

to guide and bind the complex to their complementary 

target sites located in the mRNA transcripts.  

 

 

Fig. 0: Schematic diagram of miRNA biogenesis. (Adapted from 
[59].  

Mode of action of miRNAs 

miRNA target recognition 
miRNAs generally regulate gene expression by 

binding to target mRNAs, at a post transcriptional 

level. Plants show perfect or near perfect 

complimentarity between miRNA and their target 

mRNA and induce translational repression through 
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degradation of their target transcripts [60] whereas in 

animals, miRNAs generally use a 6-8 nt sequence 

(seed region) out of ~21 nt of miRNA sequence to 

recognize the target mRNA [61]. The miRNAs seed 

region is located at nucleotide position 2-7 or 2-8 at 

the 5’ end of the mature miRNA [62] and it is this 

region which is most conserved across metazoan 

miRNAs [63, 64]. The binding of most miRNAs 

includes the 5' seed region however the presence of 

non-seed interactions have also been reported e.g. at 

the 3’ end of miRNAs and a site in the centre of 

miRNAs [65-67].  

      Helwak et al mapped human miRNAs and 

mRNAs interactions using a biochemical approach 

combined with bioinformatic analysis; Cross linking, 

Ligation and Sequenc ing of Hybrids (CLASH) and 

identified that approximately 60% of the interactions 

between the seed region and target sites in mRNAs 

were non-canonical containing bulged and 

mismatched nucleotides. In this study, 18% of the 

total miRNA-mRNA interactions involved the 3′ end 

of miRNAs, with little evidence for 5′ end contact 

[65]. In addition to seed region match, base pairing 

with target mRNA at the 3’end of miRNA is also 

possible and is called supplementary pair ing [68]. The 

presence of mismatches or G:U pair ing (refers to the 

pair ing of a G with a U instead of a C) in the seed 

region is also acceptable, however  target repression 

can be affected in this type of pairing [69-71].  

A single miRNA can target several mRNAs by 

hybridizing to the target site/s (complementary to the 

miRNA seed region) located in the 5’UTRs, coding 

regions and/or 3’UTRs leading to translational 

inhibition or mRNA degradation [66, 70, 72-74]. 

miRNA-mediated mRNA cleavage, mediated most 

likely by Ago2 RNase H activity, is based on perfect 

complimentarity between the miRNA and its target 

mRNA [45, 75-77]. However an imperfect 

complementarity between miRNA and its target 

mRNA might lead to the initiation of the other 

mechanisms of miRNA mediated gene silencing; 

translational repression and mRNA degradation.  

Translational repression 

The process of mRNA translation initiates with the 

recognition of the 5’ cap by eukaryotic translation 

initiation factor (eIF) 4E, along with other eIFs 

(eIF4G, eIF4A and eIF3). This interaction facilitates 

the recruitment of ribosomes to the 5′ end of mRNA 

and thus initiates translation.  

It has been suggested in various studies that miRNA 

mediated translational repression can occur at the 

translational initiation stage or at the translational 

post-initiation stage [78-81]. 

mRNAs whose translation is not dependent on the 

presence of 5’ cap i.e mRNAs containing an internal 

ribosome entry sites (IRES) and mRNA which has a 

non- functional 5’ cap, have been found to show 

resistance to miRNA-mediated repression [82-86]. 

These studies suggest that miRNA-mediated silencing 

interferes with eIF4E function or the cap recognition 

process during the initiation of translation. Moreover, 

evidence also suggests that repression of cap-

dependent translation can be mediated by inhibiting  

the formation of the mature ribosomal complex i.e. by 

inhibiting the recruitment of the 40S subunit and 80S 

initiation complex formation [87] or by inhibiting the 

joining of the 60S ribosomal subunit with the 40S 

subunit [81, 88]. In another study, Mathonnet et al, 

discussed the possibility that Ago2, as a part of the 

RISC, interacts with the 5’cap of the mRNA and 

interferes with the binding of eIF4E, which leads to 

the inhibition of translation initiation [83].  

      miRNA-mediated inhibition of translation at the 

post-initiation stage has also been proposed as another 

mechanism to target mRNAs. It was found that the 

lin-4 miRNA did not change the abundance of the 

target mRNA lin-14 in polysomal fractions, 

suggesting that translation was initiated normally and 

that miRNAs might act after translational initiation 

[89]. Various other studies also supported this 

mechanism of inhibit ion and provided evidence that 

repressed mRNAs were associated with actively 

translating polysomes [90-92]. miRNAs can also 

interfere with the elongation phase of translation 

either by causing degradation of the nascent 

polypeptide chain [91] or by initiating premature 

ribosome drop-off from the target mRNA [92]. 
miRNA mediated degradation of target mRNA 
Although, previous studies suggested that miRNA 

mediated silencing results in the repression of 

translation of the target mRNA without changing the 

mRNA levels [89], recent studies have indicated that 

miRNA-mediated translational repression is 

associated with the destabilization and degradation of 

the target mRNA [93, 94]. 

      Degradation of target mRNA by miRNA, requires 

deadenylation and/or 5’decapping of the target mRNA 

[82, 93]. The degradation of the target mRNA is 

thought to occur in the cytoplasmic P-bodies [95-97]. 

The Ago proteins, the poly(A) binding proteins 

(PABP) and the P-body protein GW182, are all 

involved in the deadenylation of the target mRNA 

[98-101]. GW182 protein recruits the deadenylase 
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complexes; CCR4-CAF1-NOT1 and PAN2-PAN3 

through direct interaction with NOT1 and direct or 

indirect interaction with PAN3 and PABP 

respectively. These interactions are considered 

important for the deadenylation and degradation of  

the target mRNA in a 3’-to-5’ direction. However, the 

exact mechanisms involved in the recruitment of the 

deadenylase complex to the RISC and subsequent 

deadenylation of the poly(A) tail are still not well 

understood [81, 98, 100-102]. 

      The next step in miRNA-mediated degradation 

involves the 5’ decapping of the target mRNA by the 

decapping-complex proteins DCP1 and DCP2 [103]. 

Knockdown of the decapping-complex proteins has 

been shown to lead to an accumulation of 

deadenylated mRNAs [95, 104]. A decapped mRNA 

is then degraded by the exonuclease activity of the 

major cytoplasmic 5’– 3’ exonuclease XRN1 [103, 

105].  

 

MiRNA mediated translational activation 

Several miRNAs have been reported to induce 

translational activation instead of repression under 

certain conditions or in specific cells [106-108]. 

Translational up-regulation by miRNAs could be 

achieved in two ways; activation by direct action of 

the miRNA or by the relief of repression where the 

action of a repressive miRNA is abrogated [108]. The 

translation of the CAT1 mRNA is repressed by a liver  

specific miRNA miR-122, in the P-bodies in human 

hepatoma cells. However following amino acid 

starvation the CAT1 mRNA is released from the P-

bodies and interacts with the polysomes. This process 

depends on the binding of HuR, an AU rich-element 

binding protein, to the 3’UTR of the CAT1 mRNA 

and it is this binding that inhibits the repression by 

miR-122 [109]. Another miRNA miR-369-3 has been 

shown to target the 3’UTR of TNFα mRNA and 

repress its translation in proliferating cells, however in 

G1/G0 arrested cells translation of TNFα mRNA has 

been found to be up-regulated. It has been reported 

that under serum starvation conditions miR-369-3 in 

RISC, bound to TNFα mRNA could recruit the fragile 

X–related protein 1 (FXR1) and stimulate mRNA 

translation [107, 110].  Another miRNA, miR-10a 

which can interact with the 5′-terminal 

oligopyrimidine tract (5′-TOP) motif in the 5’UTR of 

many ribosomal proteins’ mRNAs, has also been 

shown to up-regulate translation of these mRNAs 

under stress conditions or nutrient shortage [111].  

 

Conclusion 

The distinct modes of action of miRNAs have proved 

that contribution of miRNA towards gene expression 

regulation is highly signif icant. miRNAs have 

evolved as the critical regulators of cell type 

differentiation, proliferation and survival. Studies 

showed that alterations in the expression of miRNAs 

are clearly linked to the changes in numerous human, 

animal or plants disorders, cancer, in particular. 

However, the details regarding the regulation of their  

expression, biogenesis and transcriptional regulation 

are still in their infancy. Studies are required to 

investigate these details in order to enable a better  

understanding of miRNA regulation mechanisms. 

Based on increasing numbers of specific miRNA 

functional study, it is indispensable to construct a 

global view to understand miRNAs in different angles 

and their role in cell physiology and in various 

diseases. 
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