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Abstract

A Gram-positive Dbacterium, Corynebacterium pseudotuberculosis, is
responsible for severe infections in livestock and leads to significant economic
losses in the agricultural sector of agriculture. Antibiotic resistance is growing
day by day, and there is an urgent need for alternative therapeutic agents as
natural compounds. In the current study, a bifunctional enzyme, GImU, was
selected that is involved in bacterial cell wall formation and peptidoglycan
biosynthesis. GImU was investigated as a potential drug target. Experimental
techniques did not resolve the 3D structure of GImU. 3D structure was
predicted by using homology modeling, threading, and ab initio approaches,
along with their validation through various web-based structure assessment
tools. According to ERRAT, verify 3D, and Ramachandran plot values, the
Robetta model 3 was selected for further experimentation. Molecular docking
studies were applied to virtually screen the natural compounds to inhibit GlImU.
It was observed that rutin showed the highest binding affinity with a binding
energy of —9.3 kcal/mol, followed by ginkgetin and crocin with energies of —
8.4 kcal/mol and —8.2 kcal/mol, respectively. It was observed that the screened
compounds bound at the active site of GlmU, suggesting their potential to
inhibit its enzymatic activity. Overall, this study highlights that the reported
natural compounds have the potential for the development of novel anti-C.
pseudotuberculosis therapies by targeting GlmU.

=] This work is licensed under the Creative Commons Attribution Non-
Commercial 4.0 International License.
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Introduction

Corynebacterium pseudotuberculosis is a Gram-
positive, facultative intracellular bacterium that serves
as the primary causative agent of caseous
lymphadenitis in sheep and goats, ulcerative
lymphangitis in horses, and pyogranulomatous
infections in cattle [1]. This pathogen causes
significant economic losses in the livestock industries
due to reduced meat, wool, and milk production, as
well as carcass condemnation [2]. Transmission
primarily occurs through direct contact with infected
animals, contaminated fomites, or breaches in the skin
and mucous membranes [3]. Once inside the host, C.
pseudotuberculosis can survive and replicate within
macrophages, leading to persistent infections that are
difficult to eradicate. Infected animals often become
asymptomatic carriers, further complicating control

[4].
Treatment of C. pseudotuberculosis infections
typically relies on antibiotics; however, the

emergence of antimicrobial resistance has become a
major challenge [5]. Resistance to commonly used
drugs restricts treatment options and underscores the
urgent need to identify novel therapeutic targets and
alternative strategies that circumvent traditional
resistance mechanisms [6].

One promising drug target is the bifunctional enzyme
GlmU (N-acetylglucosamine-1-phosphate
uridyltransferase/glucosamine-1-phosphate
acetyltransferase) [7]. It plays a vital role in bacterial
cell wall biosynthesis by catalyzing the final steps in
the formation of UDP-N-acetylglucosamine (UDP-
GIcNAc), an essential key precursor for
peptidoglycan and lipopolysaccharide synthesis [8].
Inhibition of it disrupts cell wall integrity, increases
susceptibility to osmotic stress, and ultimately leads to
bacterial lysis. Hence, GImU represents an attractive
therapeutic target for the development of new
antimicrobials [9]. Natural compounds that inhibit
GlmU offer a promising alternative to synthetic
antibiotics, particularly against -resistant strains of C.
pseudotuberculosis [10]. Since this protein is essential
for bacterial viability, its inhibition could reduce the
likelihood of resistance development [11].

In recent years, in silico molecular docking has
emerged as a powerful and cost-effective approach in
early-stage drug discovery [12-14]. Through
advanced computational algorithms, docking
techniques enable researchers to predict the binding
interactions between potential drug candidates and
target proteins at the molecular level [15]. The
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strategy accelerates the identification of promising
compounds, minimizes the need for extensive wet-lab
experiments, and significantly reduces research costs
and time [16-18]. Consequently, in silico docking
provides a rational and efficient pathway for screening
large chemical libraries and prioritizing compounds
with the greatest potential for subsequent biological
validation.[13, 19]

Materials and Methods

The amino acid sequence of the glmU-encoded
bifunctional enzyme (487 amino acids) from
Corynebacterium pseudotuberculosis was retrieved
from UniProt Knowledgebase (UniProt ID
AO0AAUBQSVS) in FASTA format [20]. To identify a
suitable template for structural modeling, the retrieved
sequence was subjected to a BLASTp search against
the Protein Data Bank (PDB) [21]. The BLASTp
analysis identified three significant homologous
templates based on sequence similarity, query
coverage, and E-value [22]. The suitably aligned
templates were selected for homology modeling and
included GImU structures from Mycobacterium
tuberculosis (PDB ID: 3FOQ), Streptococcus
pneumoniae (PDB ID: 4AAW), and Staphylococcus
aureus (PDB ID: 9DQF).

Comparative modeling of the C. pseudotuberculosis
GImU protein was performed using three independent
modeling  approaches: = MODELLER  9vl5,
AlphaFold, and Robetta servers. = MODELLER
employs spatial restraints derived from the alignment
between the target and template sequences, while
AlphaFold and Robetta use advanced deep learning
and fragment-based prediction strategies to enhance
model accuracy [23, 24]. The combination of these
approaches ensured a robust prediction of the
protein’s conformation and allowed cross-validation
of structural consistency.

Model quality assessment is an essential step in
computational structure prediction to ensure structural
reliability and correctness. The predicted models were
evaluated using several structure validation tools. The
ERRAT server was employed to analyze non-bonded
atomic interactions and generate an overall quality
factor for each model. VERIFY 3D was used to assess
the compatibility of the 3D model with its amino acid
sequence by evaluating environmental profiles.
Additionally, PROCHECK was used to generate
Ramachandran plots for the analysis of dihedral
angles, providing information on residues located in
favored, allowed, and outlier regions. Models with the
highest percentage of residues in favored regions and
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the highest overall quality factor were considered
reliable for downstream analysis.

Molecular docking was performed using the
AutoDock Vina tool integrated within PyRx 0.8 to
identify potential natural inhibitors of GlmU. A
natural compound library from MedChem Express,
having 6015 compounds, was utilized for virtual
screening. Ligand structures were prepared and
energy-minimized before docking, and the GImU
protein model was prepared by removing water
molecules, adding polar hydrogens, and assigning
Gasteiger charges. The grid box parameters center (
X:22.1302, Y: -38657, Z: -37.1094) and dimensions
(X: 62.6983, Y: 93.2638, Z: 108.0057) were defined
to cover the predicted active site of the enzyme
comprehensively. Binding affinities (kcal/mol) were
used to rank the compounds, and the top hits were
selected for detailed interaction analysis.

The docking results were analyzed and visualized
using UCSF Chimera 1.8. The protein—ligand
complexes were examined to identify hydrogen
bonds, hydrophobic contacts, and other key non-
covalent interactions. The visual representations
highlighted binding conformations within the active
pocket, illustrating the orientation of ligands and the
involvement of specific amino acid residues in
binding. Binding energies, interacting residues, and
bond types were summarized to provide a
comprehensive  overview  of  ligand—protein
interactions. The ADMET analysis of screened
compounds was performed with the help of the
admetSAR server. The utilized methodology has been
reported extensively for the identification of novel
compounds [25-30].

Results

The present study aimed to identify a natural
compound capable of inhibiting the activity of the
GlmU protein in C. pseudotuberclosis. The 3D
structure of GImU from this organism has not yet been
experimentally determined; homology modeling was
employed to predict its structure using suitable crystal
templates. The modeled structure demonstrated high
accuracy, particularly within the active site region of
the protein. Comparative modeling and molecular
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docking were performed using the AutoDock tool
integrated within PyRx. The amino acid sequence of
GImU (487 residues) was retrieved from the UniProt
database  (accession number AOAAU8QSVS).
Template identification through BLASTp revealed
three homologous template structures having PDB
IDs 3FOQ, 4AAW, and 9DQF, which were selected
based on optimal alignment, query coverage,
similarity, and E-values (Table 1). The 3D models of
GImU were generated using MODELLER 9v15 and
validated through online web servers. Model
validation was carried out using ERRAT, Verify 3D,
and PROCHECK tools. The predicted models were
compared based on Ramachandran plot, ERRAT
overall quality factors, and VERIFY 3D score. Among
the 36 models generated, the suitable models were
selected based on validation scores (Fig. 1) and further
visualized using UCSF Chimera 1.8 (Fig. 2). The
selected GImU model achieved an overall quality
factor of 94.89% and a z-score of 82.75%, confirming
its reliability for the subsequent docking studies.

The molecular docking was performed against the
selected natural compound library, having 6015
compounds. It was observed that rutin showed the
highest binding affinity and lowest binding energy of
—9.3 kcal/mol (Fig. 3) against GImU. The residues
Gly-20, Gly-18, Ala-17, GIn-89, GIn-86, Gly-91, Glu-
209, Tyr-211, Thr-92, Asp-116, Asn-114, Asn-183,
Gly-185, Ser-184, Val-240, Asn-241, Lys-29, Arg-22,
and Gly-151 were observed as the key interacting
residues. The lowest binding energy suggested a
stable interaction between rutin and GImU.
Interestingly, it was observed that other natural
compounds showed significant binding affinities
(Table 2), highlighting their potential against GlmU.
These compounds interact with key amino acid
residues against the GImU active site, which may
interfere with its enzymatic function. ADMET
properties of the screened compounds showed
significant results (Table 3).

GImU plays a crucial role in bacterial cell wall
biosynthesis by catalyzing the formation of UDP-N-
acetylglucosamine. The inhibition of GImU activity
by the screened top-ranked natural compounds in this
study could disrupt the bacterial cell wall formation,
and this disruption may act as an antimicrobial agent.

Table 1: Suitable templates for GImU sorted by their overall query coverage and identity

Template Query coverage Percentage Identity PDB ID
Bifunctional protein GImU (Mycobacterium tuberculosis) 98% 58.91% 3FOQ
Bifunctional protein GImU (Staphylococcus aureus) 92% 42.67% 9DQF
Bifunctional protein GImU (Streptococcus pneumoniae) 94% 40.09% 4AAW
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Maodeller SDOF 5 Modeller IF00 1
bAadeller 3DOF 4 Modelle 3F04 2
Modelier IDOF 3 Modeler 3F00Q 3
Misdieller SDOF 2 Muodeller 3F00 4
Modeller 3DGF 1 Modeler 3F00 5
Mesdeller AAAW 50 Modeler IFOC 6
Modeller AAAW 3 Modelier IFO0 7
Modeller 448w & Modeler 3FO0 B
Miodeler 448W 7 - Madeller 3F00 9
Modeller AANW 6 Mesdeller IF00 10
Modallar AA8W 5 Maodallor aAAW 1
Miodedler L8AW & Modeller L8AW2
Meodeller LAAW 3
— ERRAT ey 3D cile £ R ganar asall

Fig. 1: The Comparative model assessment plot showed the quality of predicted protein structures.

Table 2: Top-ranked screened compounds against GlmU.
Compound Catalogue Number  Binding Energy (kcal/mol)

Rutin HY-N0148 93
Ginkgetin HY-N0889 -8.4
Crocin HY-N0697 -8.2
Fiestin HY-N0182 -8.1
Quercetin HY-18085 -8.1
B-Carotene HY-N0411 -8.0
Panaxadiol HY-NO0596 -7.9
Catechin HY-N0898 -7.7
Withaferin A HY-N2065 -7.7
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Fig. 2: 3D Structure of GImU.
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Fig. 3: The binding interactional analysis of rutin and GImU. A) docked complex of rutin and GImU. B) the
interactional site of GImU. C) the interacting region of the active site residues of GImU.
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Table 3. ADMET analysis of screened compounds against GImU protein.
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ADMET Properties Rutin  Ginkgetin  Crocin  Fiestin Quercetin B-Carotene Panaxadiol Catechin  Wit-A
Blood-Brain Barrier ~ 0.8542 0.6718 0.8314  0.5116 0.5711 0.9647 0.8730 0.5331 0.8697
Human Intestinal 0.8041 0.9502 0.8126  0.9833 0.9650 0.9963 1.0000 0.9654 0.8086
Absorption
AMES Toxicity 0.5118 0.9311 09132 0.5905 0.7220 0.6543 0.7725 0.7658 0.9192
Carcinogens 0.9608 0.9248 0.9406  0.9309 0.9450 0.6907 0.9148 0.9539 0.9549
Fish Toxicity(mg/l)  0.9182 0.8939 0.5314  0.9766 0.9564 0.9855 0.9301 0.8659 0.9426
Honey Bee Toxicity  0.6326 0.6752 0.7595  0.6228 0.6330 0.8116 0.7367 0.6416 0.7981
Acute Oral Toxicity  0.5971 0.6505 0.5725  0.7187 0.7348 0.8007 0.5097 0.6433 0.5780
Carcinogenicity 0.6741 0.6328 0.6766  0.5926 0.6750 0.4813 0.6574 0.5825 0.5377
Discussion inhibition could prevent the formation of UDP-N-

Corynebacterium pseudotuberculosis is a pathogenic
bacterium that causes caseous lymphadenitis, which
affects livestock. This bacterium damages the
economy and also veterinary health [31]. Antibiotic
resistance is increasing globally among various
bacterial pathogens, including C. pseudotuberculosis.
Thus, there is an urgent need for alternative
therapeutic strategies [32]. The targeted inhibition of
essential bacterial enzymes involved in cell wall
biosynthesis is another promising approach to inhibit
by using bioactive compounds derived from various
natural sources [33]. Bioinformatics is an
interdisciplinary domain that helps researchers solve
biological problems by applying computational power
[34].

GImU is a bifunctional enzyme involved in the
synthesis of UDP-N-acetylglucosamine. It plays a key
role in the formation of the bacterial cell wall [7].
GImU is responsible for two essential reactions, such
as the acetylation of glucosamine-1-phosphate and
uridylation. Both reactions are necessary for the
production of precursors for peptidoglycan synthesis
[35]. GImU has a strategic drug target for the
development of new antimicrobial agents [11]. It has
a vital role in cell wall integrity and bacterial survival.
In the present study, 3D structure prediction of GlImU
was carried out by applying homology modeling,
threading, and ab initio approaches. The predicted
structures were further evaluated by using various
validation tools, and the most suitable structure was
selected for further analyses. The validated models
were subsequently used for molecular docking studies
to screen potential inhibitors from a natural compound
library.

Rutin showed the highest binding affinity and lowest
binding energy of —9.3 kcal/mol against GImU. It was
observed that rutin interacted with the active site
residues. This interaction may induce conformational
changes that disrupt the catalytic activity. This

acetylglucosamine, thereby halting peptidoglycan
biosynthesis and compromising bacterial cell wall
integrity. It was reported that terric acid was also used
to inhibit the activity of GImU in Klebsiella
pneumoniae [36] . Methyl 2-amino-2-deoxyl-o-d-
glucopyranoside 6-phosphate, methyl 2-amino-2-
deoxyl-B-d-glucopyranoside 6-phosphate, and 2-
azido-2-deoxy-a-d-glucopyranosyl phosphate were
designed as GImU inhibitors to suppress the growth of
Mycobacterium tuberculosis [9]. The use of natural
compounds as inhibitors offers several advantages
over traditional antibiotics, including lower toxicity,
structural diversity, and reduced risk of resistance
development. Rutin presents a novel class of
antimicrobial candidates that may overcome the
limitations of conventional antibiotics. The
antimicrobial effect of rutin and quercetin against
methicillin-resistant Staphylococcus aureus was also
reported [37] . Rutin also inhibited the growth of
E.coli [38]. The identification of such compounds is
particularly significant in the face of rising multidrug
resistance, which threatens the effectiveness of
existing treatment.

Conclusion

3D structure of GlmU was predicted, and a natural
compound library was screened against the selected
target. It was observed that rutin showed the lowest
binding energy. The current findings are based on
computational predictions; they provide a valuable
starting point for further experimental validation.
Future work should involve in vitro enzymatic assays,
bacterial growth inhibition studies, and structure-
activity relationship (SAR) analyses to confirm the
inhibitory potential of rutin and related compounds
against GImU.
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